Skip to main content

Multi-scale and multi-modal assessment of coupling in the healthy and diseased brain

a colourful mri brain scan showing the connections inside the human brain
A brain scan acquired by the Siemens 3 Tesla Connectom MRI scanner.

Our aim is to substantially deepen our understanding of how different brain systems (electrical, chemical, structural, metabolic) interact with each other and how differences in these interactions impact on brain function and behaviour.

A range of neuroimaging techniques has been developed to probe different systems. We apply these routinely but do not fully understand what they measure, and whether they tell us the full story about health and/or disease.

We also do not know how signals from different techniques link with each other. In this programme, we are studying healthy people and people where we already know there are differences in coupling, including people with epilepsy and psychosis. We are also studying coupling before and after perturbing the brain, through brain training, magnetic stimulation or pharamacological manipulation.

Our vision is to deliver a step change in understanding the human brain, by creating an imaging programme that uniquely combines the very best neuroimaging expertise, equipment and techniques.

We want to answer the fundamental question of how continuous interactions of electrical, chemical, vascular and metabolic processes result in the multi-scale network activity that underpins inter-individual differences in cognition, and key behavioural/functional brain changes in disease.

This integrated characterisation of brain coupling over multiple domains will transform our understanding of the working brain and guide approaches aimed at remedial action when normal coupling is disturbed.

Key goals

A team of 11 methodological and two clinical Fellows, each focused on a specific aspect of coupling, but applied within a systematic framework of integration, will allow us to achieve our key goals, which are to:

  • optimise signal capture using the most advanced imaging technologies to yield
    sensitive, robust and repeatable markers of structure/function
  • understand these signals thereby maximising their biological interpretability and value to neurocognitive models of human behaviour
  • develop an integrative modelling framework for combining data from multiple imaging modalities
  • characterise changes in multi-scale coupling following perturbations, including
    behavioural, electromagnetic and pharmacological interventions.


This project was made possible by the Wellcome Trust Strategic Award. Find out more about our funders.

Research team

Co-applicants on the Award

A volunteer is prepared for the MRI scanner
A volunteer is prepared for the MRI scanner

Publications acknowledging the Award

  • Drakesmith M, Parker GD, Smith J, Linden SC, Rees E, Williams N, Owen MJ, van den Bree M, Hall J, Jones DK, Linden DEJ. 2019. Genetic risk for schizophrenia and developmental delay is associated with shape and microstructure of midline white-matter structures. Translational Psychiatry. 9(1):102. doi: 10.1038/s41398-019-0440-7
  • Bonaiuto JJ, Rossiter HE, Meyer SS, Adams N, Little S, Callaghan MF, Dick F, Bestmann S, Barnes GR. 2018. Non-invasive laminar inference with MEG: Comparison of methods and source inversion algorithms. Neuroimage. 167:372-383. doi:10.1016/j.neuroimage.2017.11.068
  • Espenhahn S, de Berker AO, van Wijk BCM, Rossiter HE, Ward NS. 2017. Movement-related beta oscillations show high intra-individual reliability. Neuroimage. 147:175-185. doi: 10.1016/j.neuroimage.2016.12.025.
  • Hodgetts C.J., Stefani M, Williams A.N., Kolarik B.S., Yonelinas A.P., Ekstrom A.D., Lawrence A.D., Zhang J, Graham K.S. 2019. The role of the fornix in human navigational learning. Cortex. 124:97-110. doi: 10.1016/j.cortex.2019.10.017. [Epub ahead of print]
  • Adams NE, Hughes LE, Phillips HN, Shaw AD, Murley AG, Nesbitt D, Cope TE, Bevan-Jones WR, Passamonti L, Rowe JB. 2020. GABA-ergic dynamics in human frontotemporal networks confirmed by pharmaco-magnetoencephalography. Journal of Neuroscience. pii: 1689-19. doi: 10.1523/JNEUROSCI.1689-19.2019. [Epub ahead of print]
  • Karahan E, Costigan AG, Graham KS, Lawrence AD, Zhang J. 2019. Cognitive and White-Matter Compartment Models Reveal Selective Relations between Corticospinal Tract Microstructure and Simple Reaction Time. J Neurosci. 39(30):5910–5921. doi:10.1523/JNEUROSCI.2954-18.2019
  • Drakesmith M, Harms R, Rudrapatna SU, Parker GD, Evans CJ, Jones DK. 2019. Estimating axon conduction velocity in vivo from microstructural MRI. Neuroimage. 203:116186. doi: 10.1016/j.neuroimage.2019.116186. Epub 2019 Sep 19
  • Shaw AD, Knight L, Freeman T, Williams G, Moran RJ, Friston KJ, Walters J, Singh KD. 2019. Oscillatory, Computational, and Behavioral Evidence for Impaired GABAergic Inhibition in Schizophrenia. Schizophrenia Bulletin. sbz066.
  • Shaw AD, Hughes LE, Moran RJ, Cycle-Gilchrist I, Rittman T, Rowe JB. 2019. In Vivo Assay of Cortical Microcircuitry in Frontotemporal Dementia: A Platform for Experimental Medicine Studies. Cerebral Cortex. pii: bhz024. doi: 10.1093/cercor/bhz024. [Epub ahead of print]
  • Saxena N, Gili T, Diukova A, Huckle D, Hall JE, Wise RG. 2019. Mild Propofol Sedation Reduces Frontal Lobe and Thalamic Cerebral Blood Flow: An Arterial Spin Labeling Study. Frontiers in Physiology. 10:1541. doi: 10.3389/fphys.2019.01541
  • Rowland BC, Driver ID, Tachrount M, Klomp DWJ, Rivera D, Forner R, Pham A, Italiaander M, Wise RG. 2020. Whole brain P MRSI at 7T with a dual‐tuned receive array. Magnetic resonance in medicine. 83(2):765-775. doi: 10.1002/mrm.27953
  • Clarke WT, Mougin O, Driver ID, Rua C, Morgan AT, Asghar M, Clare S, Francis S, Wise RG, Rodgers CT, Carpenter A, Muir K, Bowtell R. 2020. Multi-Site Harmonization of 7 Tesla MRI Neuroimaging Protocols. Neuroimage. 206:116335. doi: 10.1016/j.neuroimage.2019.116335
  • Chandler HL, Hodgetts CJ, Caseras X, Murphy K, Lancaster TM. 2020. Polygenic risk for Alzheimer's disease shapes hippocampal scene-selectivity. Neuropsychopharmacology. doi: 10.1038/s41386-019-0595-1. [Epub ahead of print]
  • Allen C, Mehler DMA. 2019. Open science challenges, benefits and tips in early career and beyond. PLoS Biology. 17(12):e3000587. doi: 10.1371/journal.pbio.3000587. eCollection 2019 Dec.
  • Hedge, C., Vivian-Griffiths, S., Powell, G., Bompas, A., & Sumner, P. 2019. Slow and steady? Strategic adjustments in response caution are moderately reliable and correlate across tasks. Consciousness and Cognition. 75:102797. doi: 10.1016/j.concog.2019.102797. Epub 2019 Aug 14
  • Costigan, A. G. et al. 2019. Neurochemical correlates of scene processing in the precuneus/posterior cingulate cortex: a multimodal fMRI and 1H-MRS study. Human Brain Mapping 40 (10), pp.2884-2898. (10.1002/hbm.24566)
  • Allen, C. 2019. The relationship between the temporal structure of magnetoencephalography recorded brain activity and capacity to form discrete auditory representations. European Journal of Neuroscience 49 (12), pp.1564-1574. (10.1111/ejn.14289)
  • Williams, A. Postans, M. and Hodgetts, C. 2019. How the human brain segments continuous experience. Journal of Neuroscience 39 (17), pp.3172-3174. (10.1523/JNEUROSCI.3041-18.2019)
  • Germuska, M. and Wise, R. G. 2019. Calibrated fMRI for mapping absolute CMRO2: practicalities and prospects. NeuroImage 187 , pp.145-153. (10.1016/j.neuroimage.2018.03.068)
  • Chandler, H. L. et al. 2019. Polygenic impact of common genetic risk loci for Alzheimer's disease on cerebral blood flow in young individuals. Scientific Reports 9 467. (10.1038/s41598-018-36820-3)
  • Germuska, M. et al. 2019. Dual-calibrated fMRI measurement of absolute cerebral metabolic rate of oxygen consumption and effective oxygen diffusivity. NeuroImage 184 , pp.717-728. (10.1016/j.neuroimage.2018.09.035)
  • Hodgetts, C. et al. 2019. Increased posterior default mode network activity and structural connectivity in young adult APOE-ε4 carriers: a multi-modal imaging investigation. Neurobiology of Aging 73 , pp.82-91. (10.1016/j.neurobiolaging.2018.08.026)
  • Hedge, C. et al. 2018. Low and variable correlation between reaction time costs and accuracy costs explained by accumulation models: meta-analysis and simulations. Psychological Bulletin 144 (11), pp.1200-1227. (10.1037/bul0000164)
  • Hedge, C. Powell, G. and Sumner, P. 2018. The mapping between transformed reaction time costs and models of processing in aging and cognition. Psychology and Aging 33 (7), pp.1093-1104. (10.1037/pag0000298)
  • Sumner, R. L. et al., 2018. Peak visual gamma frequency is modified across the healthy menstrual cycle. Human Brain Mapping 39 (8), pp.3187-3202. (10.1002/hbm.24069)
  • Hedge, C. Powell, G. and Sumner, P. 2018. The reliability paradox: why robust cognitive tasks do not produce reliable individual differences. Behavior Research Methods 50 (3), pp.1166-1186. (10.3758/s13428-017-0935-1)
  • Merola, A. et al. 2018. Assessing the repeatability of absolute CMRO 2 , OEF and haemodynamic measurements from calibrated fMRI. NeuroImage 173 , pp.113-126. (10.1016/j.neuroimage.2018.02.020)
  • Allen, C. et al. 2018. Evidence for parallel activation of the pre-supplementary motor area and inferior frontal cortex during response inhibition: a combined MEG and TMS study. Royal Society Open Science 5 (2) 171369. (10.1098/rsos.171369)
  • Voets, N. et al., 2017. Hippocampal MRS and subfield volumetry at 7T detects dysfunction not specific to seizure focus. Scientific Reports 7 16138. (10.1038/s41598-017-16046-5)
  • Coad, B. et al. 2017. Structural connections support emotional connections: uncinate fasciculus microstructure is related to the ability to decode facial emotion expressions. Neuropsychologia (10.1016/j.neuropsychologia.2017.11.006)
  • Shaw, A. D. et al. 2017. Neurophysiologically-informed markers of individual variability and pharmacological manipulation of human cortical gamma. NeuroImage 161 , pp.19-31. (10.1016/j.neuroimage.2017.08.034)
  • Hodgetts, C. et al. 2017. Distinct contributions of the fornix and inferior longitudinal fasciculus to episodic and semantic autobiographical memory. Cortex 94 , pp.1-14. (10.1016/j.cortex.2017.05.010)
  • Bompas, A. Hedge, C. and Sumner, P. 2017. Speeded saccadic and manual visuo-motor decisions: distinct processes but same principles. Cognitive Psychology 94 , pp.26-52. (10.1016/j.cogpsych.2017.02.002)
  • Hodgetts, C. J. et al. 2017. Ultra-high-field fMRI reveals a role for the subiculum in scene perceptual discrimination. Journal of Neuroscience 37 (12), pp.3150-3159. (10.1523/JNEUROSCI.3225-16.2017)
  • Rua, C., Clarke, W., Driver, I., Mougin, O., Morgan, A., Clare, S., Francis, S., Muir, K., Porter, D., Wise, R., Carpenter, A., Williams, G., Rowe, J., Bowtell, R. and Rodgers, C.2020. Multi-centre, multi-vendor reproducibility of 7T QSM and R2* in 1the human brain: results from the UK7T study. NeuroImage. (2020, 223, 117358;
  • Driver, I., Traat, M., Fasano, F. and Wise R. 2020. Most small cerebral cortical veins demonstrate significant flow pulsatility: a human phase contrast MRI study at 7T. Front. Neurosci. 14:415.
  • Rachael L Sumner, Meg J Spriggs, Alexander D Shaw. 2020. Modelling thalamocortical circuitry shows that visually induced LTP changes laminar connectivity in human visual cortex. PLOS Computational Biology.
  • Maizey, al. 2020. Cortical and subcortical functional specificity associated with response inhibition. NeuroImage 220, article number: 117110. (10.1016/j.neuroimage.2020.117110)
  • Allen, al. 2020. Causal manipulation of feed-forward and recurrent processing differentially affects measures of consciousness. Neuroscience of Consciousness. 2020(1), article number: niaa015. (10.1093/nc/niaa015)
  • Murray, A. N., Chandler, H. L. and Lancaster, T. M. 2021. Multimodal hippocampal and amygdala subfield volumetry in polygenic risk for Alzheimer's disease. Neurobiology of Aging, 98, pp. 33-41. (10.1016/j.neurobiolaging.2020.08.022)
  • Veraart J, Raven EP, Edwards K, Weiskopf N, Jones DK. 2021. The variability of effective MR axon radii in the human brain Human Brain Mapping (in press: doi: 10.1002/hbm.25359)
  • Messaritaki E, Foley S, Schiavi S, Magazzini L, Routley B, Jones DK, Singh KD. 2021. Predicting MEG resting-state functional connectivity using microstructural information, Network Neuroscience (in press:
  • Henriques RN, Jespersen SN, Jones DK, Veraart J. Towards more robust and reproducible diffusion kurtosis imaging. Magnetic Resonance in Medicine (in press)
  • Dimitriadis SI, Lancaster TM, Perry G, Tansey KE, Jones DK, Singh KD, Zammit S, Smith GD, O’Donovan M, Owen MJ, Linden DE. 2021. Global Brain Flexibility During Working Memory is reduced in a High Genetic Risk Group for Schizophrenia (in press at Biological Psychiatry)
  • Aja-Fernández S, Tristán-Vega A, Jones DK. Apparent propagator anisotropy from single-shell diffusion MRI acquisitions (in press at Magnetic Resonance in Medicine)
  • Kleban E, Tax CMW, Rudrapatna US, Jones DK, Bowtell R. 2020. Strong diffusion gradients allow the separation of intra- and extra-axonal gradient-echo signals in the human brain. NeuroImage 217:116793
  • Kaden E, Rudrapatna SU, Barskaya IY, Does MD, Jones DK, Alexander DC.   2020. Microscopic susceptibility anisotropy imaging NeuroImage 84:2739-2753
  • de Almeida Martins JP, Tax CMW, Szczepankiewicz F, Jones DK, Westin C-F, Topgaard D. 2020. Transferring principles of solid-state and Laplace NMR to the field of in vivo brain MRI Magnetic Resonance 1:27-43.
  • Genc S, Tax CMW, Raven EP, Chamberland M, Parker GP, Jones DK. 2020. Impact of b-value on estimates of apparent fibre density. Human Brain Mapping 41:2583-2595 doi:
  • Afzali M, Aja-Fernández S, Jones DK. Direction-averaged diffusion-weighted MRI signal using different axisymmetric B-tensor encoding schemes. Magn Reson Med. 2020 Sep;84(3):1579-1591. doi: 10.1002/mrm.28191. Epub 2020 Feb 21. PMID: 32080890; PMCID: PMC7318161.
  • Afzali M, Knutsson H, Özarslan E, Jones DK. Computing the orientational- average of diffusion-weighted MRI signals: a comparison of different techniques. Sci Rep. 202Jul 12;11(1):14345. doi: 10.1038/s41598-021-93558-1. PMID: 34253770; PMCID: PMC8275746.
  • Afzali M, Nilsson M, Palombo M, Jones DK. SPHERIOUSLY? The challenges of estimating sphere radius non-invasively in the human brain from diffusion MRI. Neuroimage. 202Aug 15;23118183. doi: 10.1016/j.neuroimage.2021.118183. Epub 202May 19. PMID: 34020013; PMCID: PMC8285594.
  • Afzali M, Pieciak T, Newman S, Garyfallidis E, Özarslan E, Cheng H, Jones DK. The sensitivity of diffusion MRI to microstructural properties and experimental factors. J Neurosci Methods. 202Jan 1;34108951. doi: 10.1016/j.jneumeth.2020.108951. Epub 2020 Oct 2. PMID: 33017644; PMCID: PMC7762827.
  • Barakovic M, Tax CMW, Rudrapatna U, Chamberland M, Rafael-Patino J, Granziera C, Thiran JP, Daducci A, Canales-Rodríguez EJ, Jones DK. Resolving bundle-specific intra-axonal Tvalues within a voxel using diffusion-relaxation tract-based estimation. Neuroimage. 202Feb 15;22117617. doi: 10.1016/j.neuroimage.2020.117617. Epub 2020 Dec 7. PMID: 33301934.
  • Casella C, Kleban E, Rosser AE, Coulthard E, Rickards H, Fasano F, Metzler- Baddeley C, Jones DK. Multi-compartment analysis of the complex gradient-echo signal quantifies myelin breakdown in premanifest Huntington's disease. Neuroimage Clin. 2021;3102658. doi: 10.1016/j.nicl.2021.102658. Epub 202Apr 5. PMID: 33865029; PMCID: PMC8079666.
  • Chamberland M, Raven EP, Genc S, Duffy K, Descoteaux M, Parker GD, Tax CMW, Jones DK. Dimensionality reduction of diffusion MRI measures for improved tractometry of the human brain. Neuroimage. 201Oct 15;2089-100. doi: 10.1016/j.neuroimage.2019.06.020. Epub 201Jun 20. PMID: 31228638; PMCID: PMC6711466.
  • Cheng H, Newman S, Afzali M, Fadnavis SS, Garyfallidis E. Segmentation of the brain using direction-averaged signal of DWI images. Magn Reson Imaging. 2020 Jun;61-7. doi: 10.1016/j.mri.2020.02.010. Epub 2020 Feb 20. PMID: 32088291.
  • Conboy V, Edwards C, Ainsworth R, Natusch D, Burcham C, Danisment B, Khot S, Seymour R, Larcombe SJ, Tracey I, Kolasinski J. Chronic musculoskeletal impairment is associated with alterations in brain regions responsible for the production and perception of movement. J Physiol. 202Apr;599(8):2255-2272. doi: 10.1113/JP281273. Epub 202Mar 23. PMID: 33675033; PMCID: PMC8132184.
  • Crawford B, Muhlert N, MacDonald G, Lawrence AD. Brain structure correlates of expected social threat and reward. Sci Rep. 2020 Oct 22;10(1):18010. doi: 10.1038/s41598-020-74334-z. PMID: 33093488; PMCID: PMC7582181.
  • Guo F, de Luca A, Parker G, Jones DK, Viergever MA, Leemans A, Tax CMW. The effect of gradient nonlinearities on fiber orientation estimates from spherical deconvolution of diffusion magnetic resonance imaging data. Hum Brain Mapp. 202Feb 1;42(2):367-383. doi: 10.1002/hbm.25228. Epub 2020 Oct 9. PMID: 33035372; PMCID: PMC7776002.
  • Harrison JR, Bhatia S, Tan ZX, Mirza-Davies A, Benkert H, Tax CMW, Jones DK. Imaging Alzheimer's genetic risk using diffusion MRI: A systematic review. Neuroimage Clin. 2020;2102359. doi: 10.1016/j.nicl.2020.102359. Epub 2020 Jul 22. PMID: 32758801; PMCID: PMC7399253.
  • Haukvik UK, Gurholt TP, Nerland S, Elvsåshagen T, Akudjedu TN, Alda M, Alnaes D, Alonso-Lana S, Bauer J, Baune BT, Benedetti F, Berk M, Bettella F, Bøen E, Bonnín CM, Brambilla P, Canales-Rodríguez EJ, Cannon DM, Caseras X, Dandash O, Dannlowski U, Delvecchio G, Díaz-Zuluaga AM, van Erp TGM, Fatjó-Vilas M, Foley SF, Förster K, Fullerton JM, Goikolea JM, Grotegerd D, Gruber O, Haarman BCM, Haatveit B, Hajek T, Hallahan B, Harris M, Hawkins EL, Howells FM, Hülsmann C, Jahanshad N, Jørgensen KN, Kircher T, Krämer B, Krug A, Kuplicki R, Lagerberg TV, Lancaster TM, Lenroot RK, Lonning V, López-Jaramillo C, Malt UF, McDonald C, McIntosh AM, McPhilemy G, van der Meer D, Melle I, Melloni EMT, Mitchell PB, Nabulsi L, Nenadić I, Oertel V, Oldani L, Opel N, Otaduy MCG, Overs BJ, Pineda-Zapata JA, Pomarol-Clotet E, Radua J, Rauer L, Redlich R, Repple J, Rive MM, Roberts G, Ruhe HG, Salminen LE, Salvador R, Sarró S, Savitz J, Schene AH, Sim K, Soeiro-de-Souza MG, Stäblein M, Stein DJ, Stein F, Tamnes CK, Temmingh HS, Thomopoulos SI, Veltman DJ, Vieta E, Waltemate L, Westlye LT, Whalley HC, Sämann PG, Thompson PM, Ching CRK, Andreassen OA, Agartz I; ENIGMA Bipolar Disorder Working Group. In vivo hippocampal subfield volumes in bipolar disorder-A mega-analysis from The Enhancing Neuro Imaging Genetics through Meta- Analysis Bipolar Disorder Working Group. Hum Brain Mapp. 2020 Oct 19. doi: 10.1002/hbm.25249. Epub ahead of print. PMID: 33073925.
  • Hedge C, Bompas A, Sumner P. Task Reliability Considerations in Computational Psychiatry. Biol Psychiatry Cogn Neurosci Neuroimaging. 2020 Sep;5(9):837-839. doi: 10.1016/j.bpsc.2020.05.004. Epub 2020 May 20. PMID: 32605726.
  • Huang CC, Hsu CH, Zhou FL, Kusmia S, Drakesmith M, Parker GJM, Lin CP, Jones DK. Validating pore size estimates in a complex microfiber environment on a human MRI system. Magn Reson Med. 202Sep;86(3):1514-1530. doi: 10.1002/mrm.28810. Epub 202May 7. PMID: 33960501.
  • Imms P, Clemente A, Cook M, D'Souza W, Wilson PH, Jones DK, Caeyenberghs K. The structural connectome in traumatic brain injury: A meta-analysis of graph metrics. Neurosci Biobehav Rev. 201Apr;9128-137. doi: 10.1016/j.neubiorev.2019.01.002. Epub 201Jan 4. PMID: 30615935.
  • Koller K, Rudrapatna U, Chamberland M, Raven EP, Parker GD, Tax CMW, Drakesmith M, Fasano F, Owen D, Hughes G, Charron C, Evans CJ, Jones DK. MICRA: Microstructural image compilation with repeated acquisitions. Neuroimage. 202Jan 15;22117406. doi: 10.1016/j.neuroimage.2020.117406. Epub 2020 Oct 10. PMID: 33045335; PMCID: PMC7779421.
  • Lipp I, Jones DK, Bells S, Sgarlata E, Foster C, Stickland R, Davidson AE, Tallantyre EC, Robertson NP, Wise RG, Tomassini V. Comparing MRI metrics to quantify white matter microstructural damage in multiple sclerosis. Hum Brain Mapp. 201Jul;40(10):2917-2932. doi: 10.1002/hbm.24568. Epub 201Mar 19. PMID: 30891838; PMCID: PMC6563497.
  • Lipp I, Parker GD, Tallantyre EC, Goodall A, Grama S, Patitucci E, Heveron P, Tomassini V, Jones DK. Tractography in the presence of multiple sclerosis lesions. Neuroimage. 2020 Apr 1;20116471. doi: 10.1016/j.neuroimage.2019.116471. Epub 201Dec 24. PMID: 31877372.
  • Lopes MA, Krzemiński D, Hamandi K, Singh KD, Masuda N, Terry JR, Zhang J. A computational biomarker of juvenile myoclonic epilepsy from resting-state MEG. Clin Neurophysiol. 202Apr;132(4):922-927. doi: 10.1016/j.clinph.2020.12.021. Epub 202Feb 4. PMID: 33636607; PMCID: PMC7992031.
  • Metzler-Baddeley C, Mole JP, Sims R, Fasano F, Evans J, Jones DK, Aggleton JP, Baddeley RJ. Fornix white matter glia damage causes hippocampal gray matter damage during age-dependent limbic decline. Sci Rep. 201Jan 31;9(1):1060. doi: 10.1038/s41598-018-37658-5. Erratum in: Sci Rep. 201Oct 17;9(1):15164. PMID: 30705365; PMCID: PMC6355929.
  • Molina-Romero M, Gómez PA, Sperl JI, Czisch M, Sämann PG, Jones DK, Menzel MI, Menze BH. A diffusion model-free framework with echo time dependence for free-water elimination and brain tissue microstructure characterization. Magn Reson Med. 201Nov;80(5):2155-2172. doi: 10.1002/mrm.27181. Epub 201Mar 23. PMID: 29573009; PMCID: PMC6790970.
  • Moyer D, Ver Steeg G, Tax CMW, Thompson PM. Scanner invariant representations for diffusion MRI harmonization. Magn Reson Med. 2020 Oct;84(4):2174-2189. doi: 10.1002/mrm.28243. Epub 2020 Apr 6. PMID: 32250475; PMCID: PMC7384065.
  • Ning L, Bonet-Carne E, Grussu F, Sepehrband F, Kaden E, Veraart J, Blumberg SB, Khoo CS, Palombo M, Kokkinos I, Alexander DC, Coll-Font J, Scherrer B, Warfield SK, Karayumak SC, Rathi Y, Koppers S, Weninger L, Ebert J, Merhof D, Moyer D, Pietsch M, Christiaens D, Gomes Teixeira RA, Tournier JD, Schilling KG, Huo Y, Nath V, Hansen C, Blaber J, Landman BA, Zhylka A, Pluim JPW, Parker G, Rudrapatna U, Evans J, Charron C, Jones DK, Tax CMW. Cross-scanner and cross- protocol multi-shell diffusion MRI data harmonization: Algorithms and results. Neuroimage. 2020 Nov 1;22117128. doi: 10.1016/j.neuroimage.2020.117128. Epub 2020 Jul 13. PMID: 32673745.
  • Petrican R, Graham KS, Lawrence AD. Brain-environment alignment during movie watching predicts fluid intelligence and affective function in adulthood. Neuroimage. 202Sep;23118177. doi: 10.1016/j.neuroimage.2021.118177. Epub 202May 18. PMID: 34020016; PMCID: PMC8350144.
  • Postans M, Parker GD, Lundell H, Ptito M, Hamandi K, Gray WP, Aggleton JP, Dyrby TB, Jones DK, Winter M. Uncovering a Role for the Dorsal Hippocampal Commissure in Recognition Memory. Cereb Cortex. 2020 Mar 14;30(3):1001-1015. doi: 10.1093/cercor/bhz143. PMID: 31364703; PMCID: PMC7132945.
  • Powell G, Derry-Sumner H, Rajenderkumar D, Rushton SK, Sumner P. Persistent postural perceptual dizziness is on a spectrum in the general population. Neurology. 2020 May 5;94(18):e1929-e1938. doi: 10.1212/WNL.0000000000009373. Epub 2020 Apr 16. PMID: 32300064; PMCID: PMC7274923.
  • Powell G, Derry-Sumner H, Shelton K, Rushton S, Hedge C, Rajenderkumar D, Sumner P. Visually-induced dizziness is associated with sensitivity and avoidance across all senses. J Neurol. 2020 Aug;267(8):2260-2271. doi: 10.1007/s00415-020-09817-0. Epub 2020 Apr 18. PMID: 32306170; PMCID: PMC7359147.
  • Routley B, Shaw A, Muthukumaraswamy SD, Singh KD, Hamandi K. Juvenile myoclonic epilepsy shows increased posterior theta, and reduced sensorimotor beta resting connectivity. Epilepsy Res. 2020 Jul;16106324. doi: 10.1016/j.eplepsyres.2020.106324. Epub 2020 Apr 2. PMID: 32335503; PMCID: PMC7684644.
  • Rudrapatna U, Parker GD, Roberts J, Jones DK. A comparative study of gradient nonlinearity correction strategies for processing diffusion data obtained with ultra-strong gradient MRI scanners. Magn Reson Med. 202Feb;85(2):1104-1113. doi: 10.1002/mrm.28464. Epub 2020 Oct 3. PMID: 33009875; PMCID: PMC8103165.
  • Shaw AD, Muthukumaraswamy SD, Saxena N, Sumner RL, Adams NE, Moran RJ, Singh KD. Generative modelling of the thalamo-cortical circuit mechanisms underlying the neurophysiological effects of ketamine. Neuroimage. 2020 Nov 1;22117189. doi: 10.1016/j.neuroimage.2020.117189. Epub 2020 Jul 23. PMID: 32711064; PMCID: PMC7762824.
  • St-Jean S, Viergever MA, Leemans A. Harmonization of diffusion MRI data sets with adaptive dictionary learning. Hum Brain Mapp. 2020 Nov;41(16):4478-4499. doi: 10.1002/hbm.25117. Epub 2020 Aug 26. PMID: 32851729; PMCID: PMC7555079.
  • Sumner P, Schwartz L, Woloshin S, Bratton L, Chambers C. Disclosure of study funding and author conflicts of interest in press releases and the news: a retrospective content analysis with two cohorts. BMJ Open. 202Jan 8;11(1):e041385. doi: 10.1136/bmjopen-2020-041385. PMID: 33419908; PMCID: PMC7798706.
  • Tax CMW, Kleban E, Chamberland M, Baraković M, Rudrapatna U, Jones DK. Measuring compartmental T2-orientational dependence in human brain white matter using a tiltable RF coil and diffusion-Tcorrelation MRI. Neuroimage. 202Aug 1;23117967. doi: 10.1016/j.neuroimage.2021.117967. Epub 202Apr 29. PMID: 33845062; PMCID: PMC8270891.
  • Tax CMW, Szczepankiewicz F, Nilsson M, Jones DK. The dot-compartment revealed? Diffusion MRI with ultra-strong gradients and spherical tensor encoding in the living human brain. Neuroimage. 2020 Apr 15;21116534. doi: 10.1016/j.neuroimage.2020.116534. Epub 2020 Jan 11. PMID: 31931157; PMCID: PMC7429990.
  • Tong Q, Gong T, He H, Wang Z, Yu W, Zhang J, Zhai L, Cui H, Meng X, Tax CWM, Zhong J. A deep learning-based method for improving reliability of multicenter diffusion kurtosis imaging with varied acquisition protocols. Magn Reson Imaging. 2020 Nov;731-44. doi: 10.1016/j.mri.2020.08.001. Epub 2020 Aug 18. PMID: 32822818.
  • Veraart J, Nunes D, Rudrapatna U, Fieremans E, Jones DK, Novikov DS, Shemesh N. Nonivasive quantification of axon radii using diffusion MRI. Elife. 2020 Feb 12;e49855. doi: 10.7554/eLife.49855. PMID: 32048987; PMCID: PMC7015669.
  • Williams AN, Ridgeway S, Postans M, Graham KS, Lawrence AD, Hodgetts CJ. The role of the pre-commissural fornix in episodic autobiographical memory and simulation. Neuropsychologia. 2020 May;14107457. doi: 10.1016/j.neuropsychologia.2020.107457. Epub 2020 Apr 4. PMID: 32259556; PMCID: PMC7322517.
  • Yeh CH, Jones DK, Liang X, Descoteaux M, Connelly A. Mapping Structural Connectivity Using Diffusion MRI: Challenges and Opportunities. J Magn Reson Imaging. 202Jun;53(6):1666-1682. doi: 10.1002/jmri.27188. Epub 2020 Jun 17. PMID: 32557893.
A participant lies in an MRI scanner while a male and female researcher operate the scanner
Researchers perform an MRI scan on a volunteer.

Preprints acknowledging the Award

A male participant prepares to slide a female participant into the bore of a white mri scanner
Our Siemens 3 Tesla Connectom scanner allows researchers to probe tissue microstructure in much finer detail than conventional MR systems.

Accepted abstracts

  • A. N. Williams, S. Ridgeway, M. Postans, K. S. Graham, A. D. Lawrence, C. J. Hodgetts;
    Cardiff Univ. Brain Res. Imaging Ctr., Cardiff Univ., Cardiff, United Kingdom. Connecting the past and the future: The role of the pre-commissural fornix in episodic autobiographical memory and simulation. Program No. 170.04. 2019 Neuroscience Meeting Planner. Chicago, IL: Society for Neuroscience, 2019. Online
  • A. N. Williams, M. Postans, C. J. Hodgetts, S. Kusmia, R. Lissaman, D. Hucker, J. Allen, A. D. Lawrence, K. S. Graham;
    Cardiff Univ. Brain Res. Imaging Ctr. (CUBRIC), Sch. of Psychology, Cardiff Univ., Cardiff, United Kingdom; Avon Longitudinal Study of Parents and Children (ALSPAC), Univ. of Bristol, Bristol, United Kingdom. Thinking outside the box: A new role for hippocampal subfields in boundary extension. Program No. 456.01. 2019 Neuroscience Meeting Planner. Chicago, IL: Society for Neuroscience, 2019. Online
  • M. Postans, A. N. Williams, M. Stefani, R. Lissaman, B. S. Kolarik, A. P. Yonelinas, A. D. Ekstrom, A. D. Lawrence, J. Zhang, K. S. Graham, C. J. Hodgetts;
    Sch. of Psychology, Cardiff Univ., Cardiff, United Kingdom; Ctr. for the Neurobio. of Learning & Memory, Univ. of California, Irvine, CA; Dept. of Psychology, Univ. of California, Davis, Davis, CA; Psychology, Univ. of Arizona, Tucson, AZ. The role of the pre-commissural fornix in an extended neuroanatomical network for goal-directed navigation . Program No. 272.11. 2019 Neuroscience Meeting Planner. Chicago, IL: Society for Neuroscience, 2019. Online
  • A. Valji, A. Costigan, C. J. Hodgetts, M.-L. Read, K. S. Graham, A. Lawrence, M. Gruber;
    Cardiff Univ. Brain Res. Imaging Ctr., Cardiff Univ., Cardiff, United Kingdom. Curious connections: White matter microstructure correlates of types of curiosity. Program No. 335.21. 2018 Neuroscience Meeting Planner. San Diego, CA: Society for Neuroscience, 2018. Online
  • Hett K, Patitucci E, Chandler H, Germuska M, Hope-Gill B, Wise R. Locally reduced cerebral blood flow in patients with Idiopathic Pulmonary Fibrosis. International Society for Magnetic Resonance in Medicine, Australia, 2020
  • Jenkins C , Kleban E , Mueller L , Evans CJ , Rudrapatna U , Jones DK, Branzoli F, Ronen I, and CMW Tax. Practical considerations of dMRS with ultra-strong gradients. International Society for Magnetic Resonance in Medicine, Australia, 2020
  • Chandler H L et al.
    Quantification of cerebral grey matter vascular and metabolic function in multiple sclerosis using dual-calibrated fMRI. International Society for Magnetic Resonance in Medicine, Montreal, 2019 (Digital Poster)
  • Chandler H L et al.
    Mapping brain oxygen metabolism with dual calibrated fMRI in pre-surgical evaluation of epilepsy: a case report comparison with FDG-PET. International Society for Magnetic Resonance in Medicine, Montreal, 2019 (Digital Poster)
  • Drakesmith M, Rudrapatna SU, Jones DK.
    Mapping axonal conduction velocities from in vivo MRI data. International Society for Magnetic Resonance in Medicine, Montreal, 2019 (Power Pitch)
  • Drakesmith M, Kleban E, Fasano F, Rudrapatna SU, Jones DK.
    Improved estimates of the g-ratio by modelling its contribution to complex signal evolution in GRE data. International Society for Magnetic Resonance in Medicine, Montreal, 2019 (Digital Poster)
  • Germuska M, Chandler HL, Stickland RC, Foster C, Steventon J, Tomassini V, Murphy K, Wise RG.
    A frequency-domain machine learning (FML) method for dual-calibrated estimation of oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen metabolism (CMRO2). International Society for Magnetic Resonance in Medicine, Montreal, 2019 (Digital Poster)
  • Jenkins C, Chandler M, Langbein F, Shermer S.
    Quantification of edited magnetic resonance spectroscopy: a comparative phantom based study of analysis methods. International Society for Magnetic Resonance in Medicine, Montreal, 2019 (Digital Poster)
  • Koller K, Rudrapatna SU, Chamberland M, Raven EP, Parker GD, Tax CMW, Drakesmith M, Evans CJ, Wood TC, Jones DK.
    Powering Up Microstructural Imaging: assessing cross-metric and cross-tract statistical power on an ultra-strong gradient MRI system. International Society for Magnetic Resonance in Medicine, Montreal, 2019 (Digital Poster)
  • Kopanoglu E, Tachrount M, Meliado EF, Klomp D, Evans J, Wise RG.
    Random RF Shimming may conceal possible local SAR hotspots for asymmetric parallel transmit coils. International Society for Magnetic Resonance in Medicine, Montreal, 2019 (Digital Poster)
  • Mueller L, Rudrapatna SU, Tax CMW, Wise RG, Jones DK.
    Diffusion MRI with b=1000 s/mm2 at TE < 22 ms using single-shot spiral readout and ultra-strong gradients: Implications for microstructure imaging. International Society for Magnetic Resonance in Medicine, Montreal, 2019 (Oral)
  • Rudrapatna SU, Mueller L, Venzi M, Wise RG, Jones DK.
    Can unprecedented echo times in human diffusion weighted fMRI help reveal its biological underpinnings? International Society for Magnetic Resonance in Medicine, Montreal, 2019 (Digital Poster)
  • Rudrapatna SU, Mueller L, Wright ME, Jones DK, Wise RG.
    A GRANDIOSE sequence to time-lock BOLD and diffusion-weighted fMRI contrasts in humans using ultra-strong gradients and spirals. International Society for Magnetic Resonance in Medicine, Montreal, 2019 (Power Pitch)
  • Tachrount M, Woorward B, Kopanoglu E, Italiaander M, Klomp D, Driver I, Wise R.
    Improving RF efficiency in the brain and the neck at 7T using a novel pTx coil. International Society for Magnetic Resonance in Medicine, Montreal, 2019 (Digital Poster)
  • Tax CMW, Rudrapatna SU, Mueller L, Jones DK.
    Characterizing diffusion of myelin water in the living human brain using ultra-strong gradients and spiral readout. International Society for Magnetic Resonance in Medicine, Montreal, 2019 (Oral)
  • Champagne A, Germuska M, Coverdale NS, Cook DJ.
    Multi-parametric analysis reveals metabolic and vascular effects driving differences in BOLD cerebrovascular reactivity associated with a history of sport concussion. International Society for Magnetic Resonance in Medicine, Montreal, 2019 (Digital Poster)
  • Rossiter HE. Oscillatory dynamics during ischemic pain. MEG UK, Cardiff, 2019. (Poster presentation)
  • Rossiter HE. Exploring cortical correlates of hand kinematics using an RSA based approach with fMRI and MEG data. MEG UK, Cardiff, 2019. (Session presentation)
  • Rossiter HE. Exploring cortical correlates of hand kinematics with fMRI and MEG. UK Sensorimotor Conference, London, 2019. (Talks session presentation)
  • Hedge, C., Powell, G., Bompas, A., & Sumner, P. If common mechanisms of inhibition existed, would we be able to detect them? Twenty-first meeting of the European Society for Cognitive Psychology (ESCOP), Potsdam, Germany, 2019. (Poster presentation)
  • Hedge, C., Powell, G., & Sumner, P. The reliability paradox: Why robust cognitive tasks do not produce reliable individual differences. The 1st Mathematical Cognition and Learning Society Conference, Oxford, UK, 2018. (Talk presentation)
  • Hedge, C., Powell, G., & Sumner, P. The costs of caution: How strategic changes influence the correlations between RT costs and error costs in choice RT tasks. The Twentieth meeting of the European Society for Cognitive Psychology (ESCOP), Potsdam, Germany, 2017. (Poster presentation)
  • Hedge, C. Crossing the desert: Understanding individual differences in cognitive control. University of Ghent, Belgium, December 2019
  • Hedge, C. Translating experimental tasks to the study of individual differences. University of Sheffield, UK, December 2018