Skip to main content

New blockchain method to improve logistics in UK defence and global industries

Blockchain-based research enabled the formation of SIMBA Chain Inc. which has secured contracts worth over £9.11 million, and developed secure messaging and data systems for the US Navy, US Air Force, and the Department of Defense (DoD).

Blockchain

SIMBA Chain have also drafted white papers on blockchain applications endorsed by a sitting US congressperson, which are being used to lobby Congress for wider application.

The business, which was founded in 2017 out of a partnership between Cardiff University’s Professor Ian Taylor and Joel Neidig from the Indiana Technology and Manufacturing Company (ITAMCO), now employs 21 full-time members of staff at their five offices across the world, including five previous Cardiff University employees and research students.

SIMBA Chain is in the process of establishing a UK-based entity within Cardiff with support from the Welsh Government.

SIMBA wins the Manufacturing Olympics

In October 2020, the US Air Force hosted an open competition to demonstrate additive manufacturing capability, promoted as the 'Advanced Manufacturing Olympics'. SIMBA Chain competed in a scenario requiring a strategy to assist a besieged military base isolated from their supply chain, including manufacture of aircraft equipment, infrastructure, and protective equipment. Competing against 16 organisations including Boeing Global Services and Stratasys - the largest additive manufacturing company in the world - SIMBA Chain won the Gold Medal and a prize of $100,000 for their additive manufacturing strategy.

Researching blockchains

Blockchain technology enables a secure system for recording transactions but its scalability and complexity require computationally expensive calculations.

Smart contracts allow transactions that are traceable, irreversible, and without third party verification, making them well suited for managing distributed resources such as government assets and supply chains.

The decentralised structure and enhanced security of blockchain architectures is an ideal basis for smart contracts, but its complexity makes specifying a single architecture for smart contracting extremely challenging. Storing a large number of transactions on a blockchain can also rapidly become computationally expensive and highly inefficient.

Professor Taylor’s research developed a workflow method that facilitated structured representations for task coordination and data movement between distributed processes and transactions. A key benefit of this method was the ability to build a scalable platform for multiple partners within a complex workflow.

Building on this workflow expertise, Professor Taylor and Professor Preece conceived a blockchain-based distributed ledger approach, which enables the encoding of a trusted audit trail for data sharing agreements. The work includes a set of case studies on how the method integrates multiple levels of information about materials through stages of a project supply chain in a tamper-proof blockchain system.

This new method achieves scalability of blockchain-based approaches through selective storage of data 'off-chain', where non-transactional data too large to be efficiently deposited in a blockchain is stored elsewhere. Instead, only a manageable fixed-size fingerprint of the stored data is bound on a blockchain, which enables smart contracting to occur, mediated by the security requirements of the scenario and transaction.

Further research involved the use of emerging standards, such as decentralized identifiers and verifiable credentials, to enhance the visibility of data, products and services. This research initiative uses verifiable credentials for establishing trust in Internet of Things (IoT) devices and services in tactical edge military scenarios.

Such approaches are being written into industry proposals to establish the verifiability of data and physical assets including IoT devices for 5G, health department data, digital twins, and additive manufacturing among others.

Publications

Meet the team

Key contacts