Physics with Astronomy with Professional Placement (MPhys)
- Subject area: Physics and astronomy
- UCAS code: F5F3
- Next intake: September 2025
- Duration: 5 years
- Mode: Full time with sandwich year
Why study this course
The MPhys Physics with Astronomy has an emphasis on astronomy and observational techniques and is ideal for those interested in fundamental questions about our Universe.
The course is designed to give you a broad understanding of physics and astronomy as well as gaining a wide range of mathematical and computational skills.
Accredited by the Institute of Physics (IOP), this five-year programme goes into greater depth than the BSc course, allowing you to further develop your sophisticated knowledge of the subject.
Studying alongside internationally respected physicists whose work is providing the basis for revolutionary innovations, you will be part of an exciting and friendly environment and have access to state-of-the-art apparatus, including lasers, X-ray sources and electronics.
This programme includes a professional placement year in industry, commerce, government or another relevant placement provider approved by the University which will give you the opportunity to gain relevant work experience in the field.
The course aims to prepare you for a career in industrial or academic research and development, education or other sectors which require a practical, numerate and analytical approach to problem solving.
Distinctive features
The distinctive features of the course include:
- You will be able to follow your passion for Astronomy while developing your key skills in Physics, Mathematics and Computing.
- The opportunity to learn in a department which has a strong commitment to research and is home to one of the UK’s largest Astronomy research groups
- You will develop the understanding and skills needed to obtain your ideal career.
- The involvement of research-active staff in course design and delivery
- A large research project in your final year
- Frequent opportunities to conduct practical work in the School’s laboratory facilities
- An emphasis on independent learning
- The opportunity to follow a professional placement year in industry
The course contains all the core content required for the degree to be accredited by the Institute of Physics (IOP).
Accreditations
Subject area: Physics and astronomy
Entry requirements
We accept a combination of A-levels and other qualifications, as well as equivalent international qualifications subject to entry requirements. Typical offers are as follows:
A level
AAA-ABB. Must include grade A in Maths.
Extended/International Project Qualification: Applicants with grade A in the EPQ/IPQ will typically receive an offer one grade lower than the standard offer. Please note that any subject specific requirements must still be met.
Our grade range covers our standard offer and contextual offer. We carefully consider the circumstances in which you've been studying (your contextual data) upon application.
- Eligible students will be given an offer at the lower end of the advertised grade range.
- Where there is no grade range advertised and/or where there are selection processes in place (like an interview) you may receive additional points in the selection process or be guaranteed interview/consideration.
Learn about eligible courses and how contextual data is applied.
International Baccalaureate
36-32 overall or 666-665 in 3 HL subjects. Must include grade 6 in HL Maths.
Baccalaureate Wales
From September 2023, there will be a new qualification called the Advanced Skills Baccalaureate Wales (level 3). This qualification will replace the Advanced Skills Challenge Certificate (Welsh Baccalaureate). The qualification will continue to be accepted in lieu of one A-Level (at the grades listed above), excluding any specified subjects.
Other essential requirements
You must have or be working towards:
- English language or Welsh language at GCSE grade C/4 or an equivalent (such as A-levels). If you require a Student visa, you must ensure your language qualification complies with UKVI requirements.
We do not accept Critical Thinking, General Studies, Citizenship Studies, or other similar equivalent subjects.
We will accept a combination of BTEC subjects, A-levels, and other qualifications, subject to the course specific grade and subject requirements.
Academic Technology Approval Scheme (ATAS)
International students using any type of visa will need to have ATAS clearance to study this course.
English language requirements
GCSE
Grade C or grade 4 in GCSE English Language.
IELTS (academic)
At least 6.5 overall with a minimum of 5.5 in each subskill.
TOEFL iBT
At least 90 overall with a minimum of 17 for writing, 17 for listening, 18 for reading, and 20 for speaking.
PTE Academic
At least 69 overall with a minimum of 59 in all communicative skills.
Trinity ISE II/III
II: at least two Distinctions and two Merits.
III: at least a Pass in all components.
Other accepted qualifications
Please visit our English Language requirements page for more information on our other accepted language qualifications.
Criminal convictions
You are not required to complete a DBS (Disclosure Barring Service) check or provide a Certificate of Good Conduct to study this course.
If you are currently subject to any licence condition or monitoring restriction that could affect your ability to successfully complete your studies, you will be required to disclose your criminal record. Conditions include, but are not limited to:
- access to computers or devices that can store images
- use of internet and communication tools/devices
- curfews
- freedom of movement
- contact with people related to Cardiff University.
Other qualifications from inside the UK
BTEC
DD-DM in a BTEC Diploma in science and engineering subjects and grade A in Maths A Level.
T level
Acceptance of T Levels for this programme will be considered on a case-by-case basis by the Academic School. Consideration will be given to the T Level grade/subject and grades/subjects achieved at GCSE/Level 2.
Please see our admissions policies for more information about the application process.
Tuition fees for 2025 entry
Your tuition fees and how you pay them will depend on your fee status. Your fee status could be home, island or overseas.
Learn how we decide your fee status
Fees for home status
Year | Tuition fee | Deposit |
---|---|---|
Year one | £9,250 | None |
Year two | £9,250 | None |
Year three (sandwich year) | £1,850 | None |
Year four | £9,250 | None |
Year five | £9,250 | None |
The University reserves the right to increase tuition fees in the second and subsequent years of a course as permitted by law or Welsh Government policy. Where applicable we will notify you of any change in tuition fee by the end of June in the academic year before the one in which the fee will increase.
Students from the EU, EEA and Switzerland
If you are an EU, EEA or Swiss national, your tuition fees for 2025/26 be in line with the overseas fees for international students, unless you qualify for home fee status. UKCISA have provided information about Brexit and tuition fees.
Fees for island status
Learn more about the undergraduate fees for students from the Channel Islands or the Isle of Man.
Fees for overseas status
Year | Tuition fee | Deposit |
---|---|---|
Year one | £29,450 | None |
Year two | £29,450 | None |
Year three (sandwich year) | £5,890 | None |
Year four | £29,450 | None |
Year five | £29,450 | None |
Learn more about our tuition fees
Financial support
Financial support may be available to individuals who meet certain criteria. For more information visit our funding section. Please note that these sources of financial support are limited and therefore not everyone who meets the criteria are guaranteed to receive the support.
Costs for sandwich years
During a sandwich year (e.g. year in industry, placement year or year abroad) a lower fee will apply. Full details can be found on our fees pages.
Additional costs
Course specific equipment
The University will provide all necessary equipment. It will also provide the core first-year physics and maths textbooks. You may choose to buy other textbooks following advice from staff. You may also wish to consider purchasing a personal computer, laptop or tablet device, although specific computing facilities are available on site.
Accommodation
We have a range of residences to suit your needs and budget. Find out more on our accommodation pages.
Living costs
We're based in one of the UK's most affordable cities. Find out more about living costs in Cardiff.
Course structure
This is a five-year full-time degree, the third year of which is spent on a professional placement. The course includes a carefully chosen balance of core modules, along with some optional modules. Modules are typically worth 10 or 20 credits and you need to earn 120 credits a year.
The modules shown are an example of the typical curriculum and will be reviewed prior to the 2025/2026 academic year. The final modules will be published by September 2025.
Year one
The range of modules in year one is designed to stimulate your interest in physics while giving you a sound foundation upon which to build in later years. At the end of the first year, you may continue with your original degree programme of choice or choose another of our physics and astronomy degrees. You will study core modules worth 120 credits.
Module title | Module code | Credits |
---|---|---|
Mathematical Methods for Physicists 1 | PX1120 | 20 credits |
Mechanics and Matter | PX1121 | 20 credits |
Planet Earth | PX1127 | 10 credits |
Experimental Physics | PX1150 | 20 credits |
Electricity, Magnetism and Waves | PX1221 | 20 credits |
Computational Skills for Problem Solving | PX1224 | 10 credits |
Introduction to Astrophysics | PX1228 | 10 credits |
Mathematical Methods for Physicists 2 | PX1230 | 10 credits |
Year two
The second year of the course continues to build on the core physics and astrophysics material. You will also take a 20-credit module called Observational Techniques in Astronomy. This introduces the theory and practice of making and interpreting astronomical observations and provides the necessary skills to undertake your astronomy or astrophysics research project in years three and four.
Module title | Module code | Credits |
---|---|---|
The Physics of Fields and Flows | PX2131 | 20 credits |
Introductory Quantum Mechanics | PX2132 | 10 credits |
Structured Programming | PX2134 | 10 credits |
Observational Techniques in Astronomy | PX2155 | 20 credits |
Thermal and Statistical Physics | PX2231 | 20 credits |
Optics | PX2232 | 10 credits |
Introduction to Condensed Matter Physics | PX2236 | 10 credits |
Module title | Module code | Credits |
---|---|---|
The Stars and their Planets | PX2140 | 10 credits |
Pathways to Success in the Physics Workplace | PX2141 | 10 credits |
Biophysics | PX2144 | 10 credits |
Physics in Action: Real-World Problem Solving | PX2241 | 10 credits |
Astrophysics in Action: Real-World Problem Solving | PX2242 | 10 credits |
Year three: Sandwich year
Year three is spent on a professional placement in industry, commerce, government or another relevant placement provider approved by the University. It is designed to help you further develop your problem-solving skills and encourage the use of initiative, to gain a professional work methodology and practical experience.
As well as enhancing your transferable skills such as report writing and oral presentations, you may experience team working, increase your self-confidence and better understand the importance of Health and Safety.
The placement (usually nine months in length) also allows you to appreciate the structure of the workplace environment and reflect on your own strengths and weaknesses.
Module title | Module code | Credits |
---|---|---|
Placement | PX9001 | 120 credits |
Year four
Year four of your degree allows you to specialise and study selected topics in depth. You will also undertake an independent 30-credit physics-related research project.
Module title | Module code | Credits |
---|---|---|
Atomic and Nuclear Physics | PX3141 | 20 credits |
Particle Physics and Special Relativity | PX3241 | 20 credits |
Physics Project | PX3350 | 30 credits |
Module title | Module code | Credits |
---|---|---|
Condensed Matter Physics | PX3142 | 10 credits |
Computational Physics | PX3143 | 10 credits |
Formation and Evolution of Stars | PX3145 | 10 credits |
Environmental Physics | PX3153 | 10 credits |
Introduction to Magnetic Resonance Imaging | PX3155 | 10 credits |
Galaxies and Galaxy Evolution | PX3156 | 10 credits |
Theoretical Physics | PX3158 | 10 credits |
Science Communication | PX3160 | 10 credits |
Radiation Protection and Diagnostic Radiology Physics | PX3164 | 10 credits |
Semiconductor Devices and Applications | PX3242 | 10 credits |
Laser Physics and Non-Linear Optics | PX3243 | 10 credits |
High-Energy Astrophysics | PX3245 | 10 credits |
Statistical Mechanics | PX3249 | 10 credits |
Commercialising Innovation | PX3253 | 10 credits |
Cosmology | PX3254 | 10 credits |
Non-Ionising Radiation in Medicine | PX3255 | 10 credits |
Radiotherapy | PX3256 | 10 credits |
Year five
The final-year project is a significant assessed part of our MPhys courses and we attach particular importance to it. It accounts for half of the year five content and provides training in analysis, synthesis and problem solving – the key skills needed by a professional astrophysicist. The project will be linked to the research work of the School and give you the opportunity to work alongside professional researchers and academic staff.
Module title | Module code | Credits |
---|---|---|
Project | PX4310 | 60 credits |
Module title | Module code | Credits |
---|---|---|
Large Molecules and Life | PX4119 | 10 credits |
Introduction to General Relativity | PX4124 | 10 credits |
Instrumentation for Astronomy | PX4125 | 10 credits |
Semiconductor Fabrication | PX4131 | 10 credits |
Modern Quantum Optics | PX4133 | 10 credits |
Quantum Theory of Many-particle systems | PX4134 | 10 credits |
Data Science | PX4146 | 10 credits |
Gravitational-wave detectors | PX4195 | 10 credits |
Low Dimensional Semiconductor Devices | PX4221 | 10 credits |
Advanced General Relativity and Gravitational Waves | PX4224 | 10 credits |
Physics and Reality | PX4230 | 10 credits |
Energy and Gas in Interstellar Space | PX4231 | 10 credits |
Observational Gravitational Wave Astronomy | PX4237 | 10 credits |
Advanced Particle Physics | PX4240 | 10 credits |
Advanced Semiconductor Device Photonics | PX4241 | 10 credits |
Exoplanets and the Search for Life | PX4245 | 10 credits |
Numerical Relativity and Waveform Modelling | PX4294 | 10 credits |
Techniques in Precision Measurement | PX4296 | 10 credits |
The University is committed to providing a wide range of module options where possible, but please be aware that whilst every effort is made to offer choice this may be limited in certain circumstances. This is due to the fact that some modules have limited numbers of places available, which are allocated on a first-come, first-served basis, while others have minimum student numbers required before they will run, to ensure that an appropriate quality of education can be delivered; some modules require students to have already taken particular subjects, and others are core or required on the programme you are taking. Modules may also be limited due to timetable clashes, and although the University works to minimise disruption to choice, we advise you to seek advice from the relevant School on the module choices available.
Learning and assessment
Teaching is carried out using a range of techniques. There are the traditional lectures, tutorials and laboratory work and computer-based, project-based and skills-based courses. Physics is a hierarchical discipline so the structure of the course is systematic, building on fundamental understanding.
Exercises are an integral part of all lecture-based modules, and these give you the opportunity to apply your knowledge, increase your critical awareness and enhance your problem-solving skills.
You will undertake weekly laboratory classes in the first two years, to prepare you for an experimental study as part of your year-three project and for your major final-year project.
Mathematics is taught alongside the major Physics and Astrophysics concepts in all years, with specific modules in the first year. It is fundamental to understanding the subject and is incorporated into many physics modules.
IT skills are taught in the first year as well as elementary programming using Python. You may take further computing and numerical-methods modules in later years.
Regular small-group tutorials are held in years one (weekly) and two (fortnightly). These meetings will allow you to meet with other students in small groups (typically four or five students to one tutor) and receive feedback on your continuous assessment. In the first year this is given on a weekly basis.
Throughout the delivery of the programme, wherever possible, recent research results are used to illustrate and illuminate the subject.
Your professional placement provider is expected to provide you with experience of a working environment, where some academic skills can be utilised and developed and which you can describe in a technical report.
How will I be supported?
Your main interaction with academic staff will be through lectures, laboratory practical sessions, workshops or small-group teaching sessions (tutorials).
You will also be allocated a personal tutor, a member of the academic staff who will provide pastoral support and academic advice during your course.
All lecturing staff can be contacted by email and have either an ‘open door’ policy for students with specific queries about course material, or a system to book meeting times. The School Office can answer most administrative queries immediately.
Your professional placement will be supervised by a placement mentor and overseen by a specially appointed academic staff member.
You will have access through the Learning Central website to relevant multimedia material, presentations, lecture handouts, bibliographies, further links, electronic exercises and discussion circles. Opportunities for you to reflect on your abilities and performance are available through the Learning Central ‘Personal Development Planning’ module.
The University offers a range of services including the Careers Service, the Counselling Service, the Disability and Dyslexia Service, the Student Support Service, and excellent libraries and resource centres.
Feedback
Feedback on progress is typically provided through a combination of discussion in class, written comments on submitted work and review of outline solutions to problems. You are encouraged to discuss any queries related to specific modules with individual lecturers.
How will I be assessed?
There are a wide variety of assessment methods. Some modules combine continuous assessment and end-of-semester exam and others are solely based on continuous assessment.
At first the nature and methods of experiments are clearly defined for you, and by year three you will be capable of tackling more open-ended investigations.
In your final-year project you will submit a fixed-format summary of your work plus a self-assessment at the end of the Autumn Semester. You will submit your final dissertation at the end of the Spring Semester. Part of your assessment will involve an interview with your supervisor and assessor (viva) and you will be asked to give a short research seminar about your project. All of these elements are assessed.
You will complete a reflective assessment of your placement, initial and final reports and give an oral presentation of the technical outcomes of your placement year.
What skills will I practise and develop?
Studying this course will enable you to acquire and develop a range of valuable skills, both discipline specific and based around general employability. You will:
- Develop your experimental, analytical and investigative skills in laboratory classes
- Learn how to design experimental equipment, electronic circuitry or computer data acquisition or data reduction algorithms
- Use precise calculations or order-of-magnitude calculations in appropriate situations
- Use computer packages and/or write software
- Conduct independent research using source materials such as textbooks, scientific journals and electronic databases
- Develop your communication skills, both orally and in writing
- Enhance your team-working skills and ability to critically appraise your own work and the work of others
- Develop your ability to undertake independent learning and effectively manage your time
Other information
Students are required to maintain a minimum average of 55% in years one and two in order to continue their studies on the MPhys programme.
Careers and placements
Career prospects
We provide a range of support to help our students to find the career opportunities that suit them best, such as a Careers Adviser who is located part-time in the School, on-site careers fairs and employer visits. We also aim to prepare our students by providing them with the skills they need to succeed in obtaining jobs and feeling confident in their chosen workplace.
The contacts you make and the work experience you gain during your placement year will enhance your CV and may even lead directly to employment or provide enhanced references for other job applications.
Employers included UK and international universities plus a range of organisations such as Rolls Royce, European Space Agency, National Instruments, Lockheed Martin, Tata Steel, and Barclays.
Graduate careers
- Research Scientist
- Statistician
- Data Analyst
- Science Communicator
- Finance and Banking
- Airline Pilot
- Software Engineer
- Teacher
Placements
Year three is spent on a professional placement in industry, commerce, government or some other institution approved by the University.
Next steps
Open Day visits
Sign up to receive our latest news.
International
Learn more about our truly global university.
Get in touch
Contact us for help with any questions you have
How to apply
Find out how to apply for this course
Discover more
HESA Data: Copyright Higher Education Statistics Agency Limited 2021. The Higher Education Statistics Agency Limited cannot accept responsibility for any inferences or conclusions derived by third parties from its data. Data is from the latest Graduate Outcomes Survey 2019/20, published by HESA in June 2022.