Discrete Mathematics and Data Science Research Team
We consider discrete and data related interdisciplinary research topics in the broad sense.
The Discrete Mathematics and Data Science (DM&DS) interdisciplinary team considers discrete and data related interdisciplinary research topics in the broad sense.
The key areas of interest run across the intersection of common research areas of the MATHS and COMSC groups. We are interested in combinatorial, geometric, computational, algorithmic, and optimisation aspects of the mathematical research, as well as in mathematical foundations for topics in Computer Science.
Aims
Our activities are focused on promotion and enhancement of collaborations between researchers from the Schools of Mathematics and Computer Science and Informatics through organisation of seminars, workshops, and discussion groups.
We aim to bring together researchers working in different areas of Discrete Mathematics and Data Science, as well as in a number of other areas within Computer Science and related Mathematics.
Our team member's research interests currently include:
 Discrete Geometry and Geometry of Numbers
 Integer Programming
 Optimisation in Graphs and Networks
 Design and Analysis of Algorithms
 Algorithm Engineering
 Data Analysis and Data Mining
 Machine Learning
 Topological Data Analysis
Academic staff
Dr Padraig Corcoran
Director, Data Science Academy
Senior Lecturer
 corcoranp@cardiff.ac.uk
 +44 (0)29 2087 6996
Seminars
All seminars are held at 15:1016:00 in Room M/1.02, Senghennydd Road, Cardiff unless stated otherwise.
Programme Coordinators
Dr Iskander Aliev (MATHS), Dr P. Corcoran (COMPS), Dr Angela Mihai (School of Mathematics) and Dr A. Gagarin (MATHS/COMPS).
Date  Speaker  Seminar 

27 November 2020 14:0015:00 Meeting ID: 215 395 8978 Password: 231456  Dr Angela Mihai (School of Mathematics)  Likely instabilities in liquid crystal elastomers In this talk, I will present stochastic material models described by strainenergy densities where the parameters are characterised by probability distributions at a continuum level. To answer important questions, such as “what is the influence of probabilistic parameters on predicted mechanical responses?” and “what are the possible equilibrium states and how does their stability depend on the material constitutive law?”, I will focus on likely instabilities in nematic liquid crystal elastomers. I will discuss the soft elasticity phenomenon where, upon stretching at constant temperature, the homogeneous state becomes unstable and alternating shear stripes develop at very low stress, and some classical effects inherited from the underlying polymeric network, such as necking, cavitation, and shell inflation instabilities. These fundamental problems are important in their own right and may stimulate related mechanical testing of nematic materials. 
24 November 2020 Meeting ID: 215 395 8978 Password: 231456  Dr Angela Mihai (School of Mathematics  Likely instabilities in liquid crystal elastomers In this talk, I will present stochastic material models described by strainenergy densities where the parameters are characterised by probability distributions at a continuum level. To answer important questions, such as “what is the influence of probabilistic parameters on predicted mechanical responses?” and “what are the possible equilibrium states and how does their stability depend on the material constitutive law?”, I will focus on likely instabilities in nematic liquid crystal elastomers. I will discuss the soft elasticity phenomenon where, upon stretching at constant temperature, the homogeneous state becomes unstable and alternating shear stripes develop at very low stress, and some classical effects inherited from the underlying polymeric network, such as necking, cavitation, and shell inflation instabilities. These fundamental problems are important in their own right and may stimulate related mechanical testing of nematic materials. 
28 April 2020 15:10  16:00 Meeting ID: 215 395 8978 Password: 231456  Dr Pavel Skums (Georgia State University)  Methods of discrete mathematics in molecular epidemiology and outbreak analysis The COVID19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARSCoV2) is continuing its global spread and straining or overwhelming health care systems around the world. At the same time, longstanding epidemics caused by HIV, Hepatitis C (HCV) and other pathogens continue to be major causes of morbidity and mortality in the world. In the quest for adequate answers to those public health challenges, data science is becoming indispensable. Recent advances in biotechnologies brought to life the discipline of computational molecular epidemiology that uses the analysis of viral genomes to investigate outbreaks and understand epidemiological and evolutionary dynamics of pathogens. In my talk, I will discuss the problems and algorithmic results that arise from applications of graph theory and discrete optimization methods in molecular epidemiology studies of HIV, HCV and SARSCoV2. 
17 March 2020 The time for this talk is 14:00 to 15:00  Dr Angela Mihai (School of Mathematics)  Likely instabilities in stochastic elasticity

12 November 2019 The time for this talk is 14:10 to 15:00  Dr Penny Holborn (University of South Wales)  Use of NLP techniques and machine learning algorithms for binary classification Natural Language Programming techniques are widely used in many applications from speech recognition to modern chatbots integrated into many of the devices and online services we use today. The recent success of NLP in solving complex realworld problems is mainly due to the availability of huge amounts of data and advances in machine learning algorithms. This talk will introduce fundamental knowledge and popular techniques utilised for gaining insight from textual data. Two real world case studies will be presented, the first will look to introduce binary classification of realworld customer reviews. The aim being, to build a robust NLP text classification model that can classify customer reviews in realtime. The second, utilising word embedding for understanding talent data. Here, inferences are made on publicly available data to help understand current talent demographics and skills to help drive business strategy. 
31 October 2019  Dr Pawel Dlotko (Swansea University)  Topological data analysis: a tiny bit of theory, lot of intuition and a few applications. Shape is one of the most fundamental concept known to the humanity. We can recognize it in a number of non related instances. But, the language to quantify shape is largely unknown in the scientific community. In this talk I will try to fill in this gap by proposing a number of shape descriptors provided by Topological Data Analysis. While keeping the theory to absolute minimum, we will see a lot of intuition, implementation as well as real examples from physics, material science, neuroscience all the way to economy and political sciences. 
28 May 2019 Note that the time for this talk is 14:10 to 15:00  Dr George Theodorakopoulos School of Computer Science & Informatics (Cardiff University)  Privacy for location histograms: How to look like a tourist in your hometown A location histogram comprises the number of visits by a user to each location in a region of interest (restaurants, hospitals, cinemas, etc.). Such histograms are useful in location analytics for product recommendation and advertising, and also more generally for clustering and classification. However, disclosing a histogram may lead to inference of sensitive information about, e.g., the user's wealth level. This talk will present joint work on protection algorithms for location histograms. We introduce two new privacy notions for individuals: sensitive location hiding and target avoidance/resemblance. The former aims to conceal all visits to a certain subset of locations that are deemed sensitive, whereas the latter aims to modify the histogram to make it look like any desirable histogram (e.g. a tourist's typical histogram) or to make it look as dissimilar as possible to a given histogram. For each privacy notion, we formulate an optimization problem that aims to maximize the corresponding notion, appropriately quantified, subject to a constraint on the acceptable quality deterioration of the histogram. We solve these problems optimally using a constrained shortest path algorithm, and we present heuristics that speed up the computation by at least two orders of magnitude while still being almost as effective as the optimal solution. 
18 March 2019  Joe Paat  The proximity function for IPs Proximity between an integer program (IP) and a linear program (LP) measures the distance between an optimal IP solution and the closest optimal LP solution. In this talk, we consider proximity as a function that depends on the right hand side vector of the IP and LP. We analyse how this proximity function is distributed and create a spectrum of probabilisticlike results regarding its value. This work uses ideas from group theory and Ehrhart theory, and it improves upon a recent result of Eisenbrand and Weismantel in the average case. This is joint work with Timm Oertel and Robert Weismantel. The proximity functions for IPs. 
25 February 2019  Oded Lachish (Birkbeck, University of London)  Smart queries versus property independent queries In the area of property testing, a central goal is to design algorithms, called tests, that decide, with high probability, whether a word over a finite alphabet is in a given property or far from the property. A property is a subset of all the possible words over the alphabet. For instance, the word can be a book, and the property can be the set of all the books that are written in English; a book is 0.1 far from being written in English if at least 0.1 of its words are not in English. The 0.1 is called the distance parameter and it can be any value in [0,1]. The input of a test is the distance parameter, the length of the input word and access to an oracle that answers queries of the sort: please give me the i'th letter in the word. The quality of a test is measured by it query complexity, which is the maximum number of queries it uses as a function of the input word length and the distance parameter, ideally this number does not depend on the input length. Tests that achieve this ideal for specific properties have been discovered for numerous properties. In general, tests that achieve the ideal for different properties differ in the manner in which they select their queries. That is, the choice of queries depends on the property. In this talk, we will see that for the price of a significant increase in the number of queries it is possible to get rid of this dependency. We will also give scenarios in which this tradeoff is beneficial. 
11 December 2018  Probabilistic Logic Programming Reasoning with relational data, learning, and dealing with uncertainty are central to many aspects of Artificial Intelligence. Their combination is studied under a variety of names, and a broad range of languages and tools have been developed. Probabilistic logic programming achieves this combination by extending the representation and reasoning capabilities of logic programming to settings with uncertain data. This talk provides a gentle introduction to the field, and also touches upon applications and challenges.  
20 November 2018 Please note that this seminar is at 14:10.  Embedding graphs containing K5subdivisions on the torus and Given a graph G, a classic problem is how to determine whether it is possible to draw G in the plane (on the sphere) with no edge crossings. Such drawing of G in the plane would be a planar embedding. The torus is the sphere with a handle, i.e. an orientable topological surface of genus 1, which is closest to the sphere. A similar problem is how to determine whether it is possible to draw G on the torus with no edge crossings, i.e. to obtain a toroidal embedding of G. A toroidality testing algorithm usually starts with a (nonplanar) subgraph of G isomorphic to a subdivision of K5 or K3,3 and tries to extend one of its embeddings on the torus to an embedding of the whole graph G in all possible ways. We have shown a modification of this approach  nonplanar graphs which don't contain certain types of K3,3subdivisions are much easier to decide on their toroidality by decomposing them in accordance with the 'edges' of K5 in the K5subdivision, testing planarity of resulting components, and eventually considering rearrangements of planar embeddings. This provides an efficient method to handle the case of an initial K5subdivision subgraph in the graph. For general nonplanar graphs containing K3,3subdivisions, we show some particular examples to decide on their toroidality in an adhoc way.  
16 October 2018 Please note that this seminar is at 14:10.  Some Open Issues in Formal Argumentation Theory Formal argumentation theory has been one of the main topics in the area of nonmonotonic reasoning for the last two decades. The idea is, roughly, construct arguments (which are defeasible inferences) from an underlying knowledge base (which consists of inference rules). Some of these arguments will then attack other arguments (for instance by having an opposite conclusion). The resulting directed graph (in which the vertices represent the arguments and the edges represent the attack relation) is called an argumentation framework. Given such an argumentation framework, one then needs a graphtheoretical principle to determine which set (or sets) of arguments is justified. This principle (and there are many of them) is called an argumentation semantics. Once the set (or sets) of justified arguments has been determined, the justified conclusions (that is, the resulting logical inference) will be the conclusions of the justified arguments.
 
9 October 2018 Please note that this seminar is at 14:10.  Dimensionality reduction techniques for global optimisation We show that the scalability challenges of Global Optimisation (GO) algorithms can be overcome for functions with low effective dimensionality, which are constant along certain linear subspaces. Such functions can often be found in applications, for example, in hyperparameter optimisation for neural networks, heuristic algorithms for combinatorial optimisation problems and complex engineering simulations. We propose the use of random subspace embeddings within a(ny) global minimisation algorithm, extending the approach in Wang et al (2013). Using tools from random matrix theory and conic integral geometry, we investigate the success rates of our lowdimensional embeddings of the original problem, in both a static and adaptive formulation, and show their independence on the (large) ambient dimension of the problem. We illustrate our algorithmic proposals and theoretical findings numerically, using state of the art global solvers. This work is joint with Adilet Otemissov (Turing Institute, London and Oxford University). 
Past events
Discrete Mathematics and Data Science Research Team Seminars 201718
Discrete Mathematics and Data Science Research Team Seminars 201617