Yr Athro John Wild

Professor John Wild

Professor, Co-Director of Clinics, Admissions Tutor

School of Optometry and Vision Sciences

Email:
wildjm@cardiff.ac.uk
Telephone:
+44 29208 76487
Fax:
+44 (0)29 2087 4859

Mae'r cynnwys hwn ar gael yn Saesneg yn unig.

Research Overview

My research interests are concerned with (i) the development of methodologies for the refinement, and for the interpretation, of the visual field examination and (ii) the relationships between the functional outcomes, i.e., those from perimetry and the structural outcomes, i.e. those from imaging.

The research centres upon open angle glaucoma and upon the ocular toxicity arising from the anti-epileptic drug, vigabatrin.

Teaching Overview

I provide a series of 15 lectures on the Second Year, OP2203, module in Investigative Techniques. I am also a supervisor in the Third Year Contact Lens Clinic for the OP3202 module in  Contact Lenses and Low Vision.

Educational and Professional Qualifications

  • 2012 DSc, City University London
  • 1977 - 2001: PhD, Clinical psychophysics of sight-impaired adolescents, Aston University
  • 1976 - 1977: MSc, Methods of Ophthalmic Examination, Aston University
  • 1975 FBOA, FSMC (now FCOptom)
  • 1971 -1974 BSc (Hons) Ophthalmic Optics, City University

Honours and awards

  • 2013: Association of Optometrists (AOP), Nominated for Lecturer of the Year
  • 2013: Cardiff University Enriching Student Life Award, Nominated for Most Effective Teacher   and for Most Uplifting Staff Member

Academic positions

  • 2010 - present: Professor, Cardiff School of Optometry and Vision Sciences, Cardiff University
  • 1996 - 2000 Senior Lecturer, Department of Vision Sciences, Aston University
  • 1980 - 1996 Lecturer, Department of Vision Sciences, Aston University.
  • 2013 - present Guest Lecturer, Department of Optics and Optometry, University High School, Brussels
  • 1996 - 2000. Honorary Consultant Visual Scientist, Birmingham Heartlands and Solihull NHS Trust (Teaching)
  • 1994 - 2000. Honorary Clinical Scientist. Birmingham and Midland Eye Centre, City Hospitals NHS Trust
  • 1991 - 1998. Adjunct Visiting Associate Professor, University of Waterloo, Ontario, Canada.

Speaking engagements

  • 2014: Presentation - NHS Education for Scotland, East Kilbride, Glasgow, Edinburgh, Ayr, Elgin, Dundee. Neurological Field loss
  • 2014: Presentation, Optrafair, London. A forum in London: structural and functional assessment in the detection and management of open-angle glaucoma
  • 2014: Presentation, Annual Meeting of the College of Optometrists, York. A forum in York: structural and functional assessment in the detection and management of open-angle glaucoma
  • 2014: Presentation, EyeCare 3000, Glasgow. A Forum for the moment - Does your detection and management of glaucoma need upgrading?
  • 2013: Presentation, Department of Optics and Optometry, University High School, Brussels Visual Field Examination
  • 2013: Presentation, St Cyres Comprehensive School, Penarth.  An eye to history
  • 2013: Presentation, South Western Ophthalmological Society Meeting, Bristol. Vigabatrin in ophthalmology
  • 2013: Presentation, Annual Meeting of the French Association of Optometrists, Paris. Le champ visuel
  • 2012: Presentation: - European Professors of Ophthalmology, Leuven, Belgium. Visual field testing in neuro- ophthalmology
  • 2012: Presentation Western Front Association, South Wales Branch. Les inconnu du Mà morial de Thià pval

Committees and reviewing

  • 2010 - present: Member of Research Committee
  • 2014 - present Board of Directors
  • 2014 - present School Research Audit Ethics Committee

External Committees/Memberships

  • 2000 - present Welsh Optometric Committee
  • 1988 - present: Member of the Association for Research in Vision and Ophthalmology (ARVO)
  • 2008 - present: Member of the European Glaucoma Society
  • 2007 - present: Member Glaucoma Society United Kingdom and Eire
  • 2002 - present Optometric Glaucoma Society.
  • 1986 -   2010 Imaging and Perimetric Society (President 1996-2000).

My research involves three areas: the development of methodologies for the refinement of the visual field examination; the relationship between structure and function in glaucoma; and the investigation of drug-related visual field loss particularly that associated with anti-convulsant therapy.

Isolation of factors influencing the short-term and long-term fluctuation of the threshold response and the separation of the optical component of perimetric sensitivity from that of the neural component. The outcome of the visual field examination can be influenced by a variety of artifacts which can mimic the appearance of both diffuse and focal loss thereby impairing the clinical precision of the examination. We have documented the presence of a learning effect in automated perimetry whereby perimetric sensitivity improved with repeated examination both within-and between-eyes at a given examination and also between-examinations - a finding of considerable ramification for the monitoring of the efficacy of therapeutic intervention. We have also shown that forward light scatter arising from media opacities causes an apparent diffuse depression of the visual field in primary open angle glaucoma and to produce an apparent reduction in the size and/or depth of focal visual loss.

Development of statistical procedures for the identification of progressive visual field loss: The short-term and the long-term variability hinder the identification of progressive visual field loss in serial visual field analysis. Over a number of years collaborative work in Canada with John Flanagan at the Universities of Waterloo and Toronto and Graham Trope at the University of Toronto has resulted in the development of a mathematical model for the pointwise distribution of sensitivity in normals, ocular hypertensives and primary open angle glaucoma based upon polynomial and multiple regression.

Short wavelength automated perimetry: Considerable interest currently centres on the use of short-wavelength automated perimetry (SWAP) for the early detection of visual field loss in primary open angle glaucoma. Five research groups, including my own, have now suggested that SWS visual field loss can occur in primary open angle glaucoma prior to conventional white-on-white (W-W) field loss and can exhibit progression in advance of that when recorded with conventional W-W perimetry. However, we have shown that the between-subject normal variability of the threshold response obtained with SWAP in non-elite observers, and from which the confidence limits for normality are constructed, is greater than that for conventional W-W perimetry. In addition, we have also reported that the within-subject within-test variability and the within-subject between-test variability are also greater for SWAP than for W-W perimetry. The increased confidence limits for SWAP hinder the detection of abnormality whilst the greater within-test and between-test variability impedes the detection of progressing field loss. The technique in its current format is therefore too difficult and consequently has not become established as a routine part of ophthalmological practice.

Structure and functional assessment in primary open angle glaucoma: The relationship between the appearance of the optic nerve head in primary open angle glaucoma and the appearance of the conventional W-W visual field is tenuous. The lack of correlation implies structural change prior to functional loss. Optical Coherence Tomography is a recently introduced imaging technique which can perform cross-sectional or tomographic imaging. The technique is based upon low-coherence interferometry which is used to measure the echo delay time of light reflected from the various microstructural features under investigation. The technology is capable of measuring the retinal nerve fibre layer (RNFL) thickness. We have developed a methodology which yields a reproducible measure of the RNFL in glaucoma. Studies relating structure to function are currently in progress involving RNFL analysis, optic nerve head tomography, conventional white-on-white perimetry SWAP and Frequency Doubling Perimetry.

The prevalence and aetiology of visual field loss associated with anticonvulsant medication: The anti-epileptic drug vigabatrin is an effective and well-tolerated drug used for the treatment of partial seizures in adults and children. A characteristic pattern of visual field loss is associated with vigabatrin; namely, a bilateral constriction. We have shown that within the central field, only, (i.e. out to 30  from fixation) the vigabatrin-attributed visual field loss can take on a variety of forms. In mild and moderate cases, the defect manifests as a steeply bordered, crescent-like loss in the nasal field which typically extends superiorly and inferiorly with a preservation of the temporal field. In severe cases, the defect is steeply bordered and concentric to within approximately 15  from fixation. In early cases, the defect can occur inferior-nasally. The field loss is asymptomatic in the majority of patients. Seemingly, the preservation of good central visual acuity together with reasonable sparing of the temporal field enables the patient to carry on the usual activities of daily living without apparent difficulty. Collaborative research with Graham Harding at Aston University has shown that certain visual electrophysiological abnormalities of the ERG (the photopic a-b amplitude, scotopic a wave latency and the latency of OP2) are significantly associated with current vigabatrin therapy. We have also shown that the latency of the a wave under 30 Hz conditions, the amplitude of the 30Hz a-b response and the latency of the photopic a wave are significantly associated with the presence of severe visual field loss.

Funding

Wild,  £60,000, Dynamic Noise Perimetry Cardiff partnership Fund, 2010-2012