Mark Hannam
- Media commentator
Overview
I study black holes and gravitational waves, and I work on producing theoretical models of gravitational waves from collisions of black holes.
I was very happy when the first ever gravitational waves that were directly measured by LIGO turned out to be from black holes colliding, and the models that I've worked on (with people in Cardiff and around the world) were used to interpret the results.
Biography
I studied at Waikato and Canterbury Universities in New Zealand, and at the University of North Carolina at Chapel Hill, in the USA. During my PhD I numerically solved the equations necessary to provide the initial conditions for simulations of collisions of black holes.
After I completed my PhD in 2003, I embarked on a research world tour, stopping at the University of Texas at Brownsville; the Friedrich-Schiller-University in Jena, Germany; University College Cork, Ireland; and the University of Vienna, Austria. In 2010 I came to Cardiff as an STFC Advanced Fellow, and became a professor in 2015. In 2015 I was also awarded an ERC Consolidator Grant to study precessing binary black holes.
Professional memberships
- Institute of Physics
Publications
2024
- Abbott, R. et al. 2024. Search for gravitational-lensing signatures in the full third observing run of the LIGO–Virgo network. Astrophysical Journal 970(191) (10.3847/1538-4357/ad3e83)
- Abac, A. G. et al. 2024. Observation of gravitational waves from the coalescence of a 2.5–4.5 M ⊙ compact object and a neutron star. The Astrophysical Journal Letters 970(2), article number: L34. (10.3847/2041-8213/ad5beb)
- Aurrekoetxea, J. C., Hoy, C. and Hannam, M. 2024. Revisiting the cosmic string origin of GW190521. Physical Review Letters 132(18), article number: 181401. (10.1103/PhysRevLett.132.181401)
- Abbott, R. et al. 2024. Search for gravitational-wave transients associated with magnetar bursts in Advanced LIGO and Advanced Virgo data from the third observing run. The Astrophysical Journal 966(1), article number: 137. (10.3847/1538-4357/ad27d3)
- Fletcher, C. et al. 2024. A joint Fermi-GBM and Swift-BAT analysis of Gravitational-wave candidates from the third Gravitational-wave Observing Run. The Astrophysical Journal 964(2), article number: 149. (10.3847/1538-4357/ad1eed)
- Thompson, J. E., Hamilton, E., London, L., Ghosh, S., Kolitsidou, P., Hoy, C. and Hannam, M. 2024. Phenomenological gravitational-wave model for precessing black-hole binaries with higher multipoles and asymmetries. Physical Review D (particles, fields, gravitation, and cosmology) 109(6), article number: 63012. (10.1103/PhysRevD.109.063012)
- Hamilton, E. et al. 2024. Catalog of precessing black-hole-binary numerical-relativity simulations. Physical Review D (particles, fields, gravitation, and cosmology) 109(4), article number: 44032. (10.1103/PhysRevD.109.044032)
- Ghosh, S., Kolitsidou, P. and Hannam, M. 2024. First frequency-domain phenomenological model of the multipole asymmetry in gravitational-wave signals from binary-black-hole coalescence. Physical Review D (particles, fields, gravitation, and cosmology) 109(2), article number: 24061. (10.1103/PhysRevD.109.024061)
- Abbott, R. et al. 2024. GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run. Physical Review D (particles, fields, gravitation, and cosmology) 109(2), article number: 22001. (10.1103/PhysRevD.109.022001)
2023
- Abbott, R. et al. 2023. Search for gravitational waves associated with fast radio bursts detected by CHIME/FRB during the LIGO–Virgo observing run O3a. Astrophysical Journal 955(2), article number: 155. (10.3847/1538-4357/acd770)
- Abbott, R. et al. 2023. Constraints on the cosmic expansion history from GWTC–3. Astrophysical Journal 949(2), article number: 76. (10.3847/1538-4357/ac74bb)
- Hamilton, E., London, L. and Hannam, M. 2023. Ringdown frequencies in black holes formed from precessing black-hole binaries. Physical Review D (particles, fields, gravitation, and cosmology) 107(10), article number: 104035. (10.1103/PhysRevD.107.104035)
- Abbott, R. et al. 2023. Population of merging compact binaries inferred using gravitational waves through GWTC-3. Physical Review X 13(1), article number: 11048. (10.1103/PhysRevX.13.011048)
- Abbott, R. et al. 2023. Search for subsolar-mass black hole binaries in the second part of Advanced LIGO's and Advanced Virgo's third observing run. Monthly Notices of the Royal Astronomical Society, article number: stad588. (10.1093/mnras/stad588)
2022
- Fairhurst, S. et al. 2022. All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data. Physical Review D 106(10) (10.1103/PhysRevD.106.102008)
- Hannam, M. et al. 2022. General-relativistic precession in a black-hole binary. Nature 610(7933), pp. 652-655. (10.1038/s41586-022-05212-z)
- Abbott, R. et al. 2022. Search for gravitational waves from Scorpius X-1 with a hidden Markov model in O3 LIGO data. Physical Review D 106(6), article number: 62002. (10.1103/PhysRevD.106.062002)
- Abbott, R. et al. 2022. Search for continuous gravitational wave emission from the Milky Way center in O3 LIGO-Virgo data. Physical Review D 106(4), article number: 42003. (10.1103/PhysRevD.106.042003)
- Abbott, R. et al. 2022. Search for subsolar-mass binaries in the first half of advanced LIGO's and advanced Virgo's third observing run. Physical Review Letters 129(6) (10.1103/PhysRevLett.129.061104)
- Abbott, R. et al. 2022. First joint observation by the underground gravitational-wave detector, KAGRA, with GEO 600. Progress of Theoretical and Experimental Physics 2022(6), article number: 063F01. (10.1093/ptep/ptac073)
- Abbott, R. et al. 2022. Narrowband searches for continuous and long-duration transient gravitational waves from known pulsars in the LIGO-Virgo third observing run. Astrophysical Journal 932(2), article number: 133. (10.3847/1538-4357/ac6ad0)
- Abbott, R. et al. 2022. All-sky, all-frequency directional search for persistent gravitational waves from Advanced LIGO's and Advanced Virgo's first three observing runs. Physical Review D 105(12), article number: 122001. (10.1103/PhysRevD.105.122001)
- Abbott, R. et al. 2022. All-sky search for gravitational wave emission from scalar boson clouds around spinning black holes in LIGO O3 data. Physical Review D 105(10), article number: 102001. (10.1103/PhysRevD.105.102001)
- Abbott, R. et al. 2022. Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants. Physical Review D 105(8), article number: 82005. (10.1103/PhysRevD.105.082005)
- Abbott, R. et al. 2022. Search for gravitational waves associated with gamma-ray bursts detected by Fermi and Swift during the LIGO-Virgo Run O3b. Astrophysical Journal 928(2), article number: 186. (10.3847/1538-4357/ac532b)
- Abbott, R. et al. 2022. Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo. Astronomy & Astrophysics 659, article number: A84. (10.1051/0004-6361/202141452)
- Hoy, C., Fairhurst, S., Hannam, M. and Tiwari, V. 2022. Understanding how fast black holes spin by analyzing data from the second gravitational-wave catalogue. Astrophysical Journal 928(1), article number: 75. (10.3847/1538-4357/ac54a3)
- Abbott, R. et al. 2022. Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run. Physical Review D 105(6), article number: 63030. (10.1103/PhysRevD.105.063030)
2021
- Abbott, R. et al. 2021. Search for lensing signatures in the gravitational-wave observations from the first half of LIGO-Virgo's third observing run. Astrophysical Journal 923(1), article number: 14. (10.3847/1538-4357/ac23db)
- Abbott, R. et al. 2021. All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Physical Review D 104, article number: 122004. (10.1103/PhysRevD.104.122004)
- Hamilton, E. et al. 2021. Model of gravitational waves from precessing black-hole binaries through merger and ringdown. Physical Review D 104(12), article number: 124027. (10.1103/PhysRevD.104.124027)
- Aasi, J. et al. 2021. Erratum: "Searches for continuous gravitational waves from nine young supernova remnants" (2015, ApJ, 813, 39). Astrophysical Journal 918(2), pp. 90. (10.3847/1538-4357/ac1f2d)
- Abbott, R. et al. 2021. Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs. Physical Review D 104(2), article number: 22005. (10.1103/PhysRevD.104.022005)
- Abbott, R. et al. 2021. Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo's third observing run. Physical Review D 104(2), article number: 22004. (10.1103/PhysRevD.104.022004)
- Abbott, R. et al. 2021. Search for gravitational waves associated with gamma-ray bursts detected by Fermi and Swift during the LIGO-Virgo run O3a. Astrophysical Journal 915(2), article number: 86. (10.3847/1538-4357/abee15)
- Abbott, R. et al. 2021. Observation of gravitational waves from two neutron star-black hole coalescences. Astrophysical Journal Letters 915(1), article number: L5. (10.3847/2041-8213/ac082e)
- Abbott, R. et al. 2021. GWTC-2: compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run. Physical Review X 11(2), article number: 21053. (10.1103/PhysRevX.11.021053)
- Abbott, R. et al. 2021. Constraints on cosmic strings using data from the third advanced LIGO-Virgo observing run. Physical Review Letters 126(24), article number: 241102. (10.1103/PhysRevLett.126.241102)
- Green, R., Hoy, C., Fairhurst, S., Hannam, M., Pannarale, F. and Thomas, C. 2021. Identifying when precession can be measured in gravitational waveforms. Physical Review D 103(12), article number: 124023. (10.1103/PhysRevD.103.124023)
- Abbott, R. et al. 2021. Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. Physical Review D 103(12), article number: 122002. (10.1103/PhysRevD.103.122002)
- Abbott, R. et al. 2021. All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems. Physical Review D 103(6), article number: 64017. (10.1103/PhysRevD.103.064017)
- Abbott, B. P. et al. 2021. A gravitational-wave measurement of the Hubble constant following the second observing run of Advanced LIGO and Virgo. Astrophysical Journal 909(2), article number: 218. (10.3847/1538-4357/abdcb7)
- Abbott, R. et al. 2021. Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo. SoftwareX 13, article number: 100658. (10.1016/j.softx.2021.100658)
- Kalaghatgi, C. and Hannam, M. 2021. Investigating the effect of in-plane spin directions for precessing binary black hole systems. Physical Review D 103(2), article number: 24024. (10.1103/PhysRevD.103.024024)
2020
- Abbott, R. et al. 2020. Gravitational-wave constraints on the equatorial ellipticity of millisecond pulsars. Astrophysical Journal Letters 902(1), article number: L21. (10.3847/2041-8213/abb655)
- Abbott, B. P. et al. 2020. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity 23(1), article number: 3. (10.1007/s41114-020-00026-9)
- Abbott, R. et al. 2020. GW190521: a binary back hole merger with a total mass of 150 M⊙. Physical Review Letters 125(10), article number: 101102. (10.1103/PhysRevLett.125.101102)
- Abbott, R. et al. 2020. Properties and astrophysical implications of the 150 M ⊙ binary black hole merger GW190521. Astrophysical Journal Letters 900(1), article number: L13. (10.3847/2041-8213/aba493)
- Abbott, R. et al. 2020. GW190412: observation of a binary-black-hole coalescence with asymmetric masses. Physical Review D 102(4), article number: 43015. (10.1103/PhysRevD.102.043015)
- Fairhurst, S., Green, R., Hannam, M. and Hoy, C. 2020. When will we observe binary black holes precessing?. Physical Review D 102(4), article number: 041302(R). (10.1103/PhysRevD.102.041302)
- Fairhurst, S., Green, R., Hoy, C., Hannam, M. and Muir, A. 2020. Two-harmonic approximation for gravitational waveforms from precessing binaries. Physical Review D 102(2), article number: 24055. (10.1103/PhysRevD.102.024055)
- Abbott, R. et al. 2020. GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object. Astrophysical Journal Letters 896(2), article number: L44. (10.3847/2041-8213/ab960f)
- Thompson, J. E., Fauchon-Jones, E., Khan, S., Nitoglia, E., Pannarale, F., Dietrich, T. and Hannam, M. 2020. Modeling the gravitational wave signature of neutron star black hole coalescences. Physical Review D 101(12), article number: 124059. (10.1103/PhysRevD.101.124059)
- Kalaghatgi, C., Hannam, M. and Raymond, V. 2020. Parameter estimation with a spinning multimode waveform model. Physical Review D 101(10), article number: 103004. (10.1103/PhysRevD.101.103004)
- Hamburg, R. et al. 2020. A joint Fermi-GBM and LIGO/Virgo analysis of compact binary mergers from the first and second gravitational-wave observing runs. Astrophysical Journal 893(2), article number: 100. (10.3847/1538-4357/ab7d3e)
- Abbott, B. P. et al. 2020. Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. Physical Review D 101(8), article number: 84002. (10.1103/PhysRevD.101.084002)
- Abbott, B. P. et al. 2020. A guide to LIGO-Virgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity 37(5), article number: 55002. (10.1088/1361-6382/ab685e)
- Abbott, B. P. et al. 2020. Model comparison from LIGO-Virgo data on GW170817's binary components and consequences for the merger remnant. Classical and Quantum Gravity 37(4), article number: 45006. (10.1088/1361-6382/ab5f7c)
2019
- Abbott, B. et al. 2019. Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. Physical Review D 100(12), article number: 122002. (10.1103/PhysRevD.100.122002)
- Abbott, B. P. et al. 2019. Search for gravitational-wave signals associated with gamma-ray bursts during the second observing run of advanced LIGO and Advanced Virgo. Astrophysical Journal 886(1), article number: 75. (10.3847/1538-4357/ab4b48)
- Abbott, B. et al. 2019. Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. Physical Review D 100(10), article number: 104036. (10.1103/PhysRevD.100.104036)
- Chatziioannou, K. et al. 2019. On the properties of the massive binary black hole merger GW170729. Physical Review D 100(10), article number: 104015. (10.1103/PhysRevD.100.104015)
- Abbott, B. et al. 2019. Search for subsolar mass ultracompact binaries in advanced LIGO's second observing run. Physical Review Letters 123(16), article number: 161102. (10.1103/PhysRevLett.123.161102)
- Abbott, B. et al. 2019. Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. Physical Review D 100(6), article number: 64064. (10.1103/PhysRevD.100.064064)
- Abbott, B. P. et al. 2019. Binary black hole population properties inferred from the first and second observing runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters 882(2), article number: L24. (10.3847/2041-8213/ab3800)
- Abbott, B. et al. 2019. GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Physical Review X 9(3), article number: 31040. (10.1103/PhysRevX.9.031040)
- Khan, S., Chatziioannou, K., Hannam, M. and Ohme, F. 2019. Phenomenological model for the gravitational-wave signal from precessing binary black holes with two-spin effects. Physical Review D 100(2), article number: 24059. (10.1103/PhysRevD.100.024059)
- Booth, C. et al. 2019. All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. Physical Review D 100(2), article number: 24004. (10.1103/PhysRevD.100.024004)
- Abbott, B. et al. 2019. All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. Physical Review D 100(2), pp. -., article number: 24017. (10.1103/PhysRevD.100.024017)
- Abbott, B. et al. 2019. Tests of general relativity with GW170817. Physical Review Letters 123, pp. -., article number: 11102. (10.1103/PhysRevLett.123.011102)
- Abbott, B. P. et al. 2019. Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015?2017 LIGO Data. Astrophysical Journal 879(1), pp. 10., article number: 10. (10.3847/1538-4357/ab20cb)
- Abbott, B. P. et al. 2019. Properties of the binary neutron star merger GW170817. Physical Review X 9(1), article number: 11001. (10.1103/PhysRevX.9.011001)
- Abbott, B. et al. 2019. Constraining the p-Mode-g-Mode tidal instability with GW170817. Physical Review Letters 122(6), pp. -., article number: 61104. (10.1103/PhysRevLett.122.061104)
- Burns, E. et al. 2019. A fermi gamma-ray burst monitor search for electromagnetic signals coincident with gravitational-wave candidates in advanced LIGO's first observing run. Astrophysical Journal 871(1), article number: 90. (10.3847/1538-4357/aaf726)
2018
- Tiwari, V., Fairhurst, S. and Hannam, M. 2018. Constraining black hole spins with gravitational-wave observations. Astrophysical Journal 868(2), pp. -., article number: 140. (10.3847/1538-4357/aae8df)
- Abbott, B. P. et al. 2018. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity 21(1) (10.1007/s41114-018-0012-9)
- Nagar, A. et al. 2018. Time-domain effective-one-body gravitational waveforms for coalescing compact binaries with nonprecessing spins, tides, and self-spin effects. Physical Review D 98(10), article number: 104052. (10.1103/PhysRevD.98.104052)
- Dudi, R., Pannarale Greco, F., Dietrich, T., Hannam, M., Bernuzzi, S., Ohme, F. and Brügmann, B. 2018. Relevance of tidal effects and post-merger dynamics for binary neutron star parameter estimation. Physical Review D 98(8), article number: 84061. (10.1103/PhysRevD.98.084061)
- Abbott, B. P. et al. 2018. GW170817: Measurements of neutron star radii and equation of state. Physical Review Letters 121(16), article number: 161101. (10.1103/PhysRevLett.121.161101)
- Hamilton, E. and Hannam, M. 2018. Inferring black-hole orbital dynamics from numerical-relativity gravitational waveforms. Physical Review D 98(8), article number: 84018. (10.1103/PhysRevD.98.084018)
- Slinker, K., Evans, C. R. and Hannam, M. 2018. Trumpet initial data for boosted black holes. Physical Review D 98(4), article number: 44014. (10.1103/PhysRevD.98.044014)
- Abbott, B. et al. 2018. Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters 120(20), pp. -., article number: 201102. (10.1103/PhysRevLett.120.201102)
- Abbott, B. et al. 2018. Full band all-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D 97(10), article number: 102003. (10.1103/PhysRevD.97.102003)
- Abbott, B. et al. 2018. Constraints on cosmic strings using data from the first Advanced LIGO observing run. Physical Review D 97(10), article number: 102002. (10.1103/PhysRevD.97.102002)
- London, L. et al. 2018. First higher-multipole model of gravitational waves from spinning and coalescing black-hole binaries. Physical Review Letters 120(16), article number: 161102. (10.1103/PhysRevLett.120.161102)
- Abbott, B. et al. 2018. GW170817: Implications for the stochastic gravitational-wave background from compact binary coalescences. Physical Review Letters 120(9) (10.1103/PhysRevLett.120.091101)
- Abbott, B. P. et al. 2018. Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run. Classical and Quantum Gravity 35(6), article number: 65010. (10.1088/1361-6382/aaaafa)
2017
- Abbott, B. et al. 2017. First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. Physical Review D 96(12), pp. -., article number: 122006. (10.1103/PhysRevD.96.122006)
- Abbott, B. P. et al. 2017. GW170608: Observation of a 19 solar-mass binary black hole coalescence. Astrophysical Journal Letters 851, article number: L35. (10.3847/2041-8213/aa9f0c)
- Abbott, B. et al. 2017. Search for post-merger Gravitational Waves from the remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters 851(1), article number: L16. (10.3847/2041-8213/aa9a35)
- Abbott, B. P. et al. 2017. Estimating the contribution of dynamical ejecta in the kilonova associated with GW170817. Astrophysical Journal Letters 850(2), article number: L39. (10.3847/2041-8213/aa9478)
- Puerrer, M., Smith, R., Field, S., Canizares, P., Raymond, V., Gair, J. and Hannam, M. 2017. Accelerating parameter estimation of gravitational waves from black hole binaries with reduced order quadratures. Presented at: 14th Marcel Grossman Meeting On Recent Developments in Theoretical and Experimental General Relativity, 12 -18 July 2015 Presented at Bianchi, M., Jantzen, R. T. and Ruffini, R. eds.14th Marcel Grossman Meeting On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories: Proceedings of the MG14 Meeting on General Relativity. World Scientific Publishing pp. 2015-2018., (10.1142/9789813226609_0218)
- Puerrer, M., Hannam, M. and Ohme, F. 2017. Can we measure individual black-hole spins from gravitational-wave observations?. Presented at: 14th Marcel Grossman Meeting On Recent Developments in Theoretical and Experimental General Relativity, 12 -18 July 2015 Presented at Bianchi, M., Jantzen, R. T. and Ruffini, R. eds.14th Marcel Grossman Meeting On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories: Proceedings of the MG14 Meeting on General Relativity. World Scientific Publishing pp. 3144-3148., (10.1142/9789813226609_0399)
- Dorrington, I. et al. 2017. Search for high-energy neutrinos from binary neutron star merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. The Astrophysical Journal Letters 850(2), article number: L35. (10.3847/2041-8213/aa9aed)
- Abbott, B. P. et al. 2017. A gravitational-wave standard siren measurement of the Hubble constant. Nature 551, pp. 85-88. (10.1038/nature24471)
- Abbott, B. P. et al. 2017. Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophysical Journal Letters 848(2), article number: L13. (10.3847/2041-8213/aa920c)
- Abbott, B. P. et al. 2017. Multi-messenger observations of a Binary Neutron Star Merger. Astrophysical Journal Letters 848(2), article number: L12. (10.3847/2041-8213/aa91c9)
- Abbott, B. P. et al. 2017. GW170817: Observation of gravitational waves from a binary neutron star inspiral. Physical Review Letters 119(16), article number: 161101. (10.1103/PhysRevLett.119.161101)
- Abbott, B. P. et al. 2017. GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence. Physical Review Letters 119(14), article number: 141101. (10.1103/PhysRevLett.119.141101)
- Keitel, D. et al. 2017. The most powerful astrophysical events: Gravitational-wave peak luminosity of binary black holes as predicted by numerical relativity. Physical Review D 96(2), pp. -., article number: 24006. (10.1103/PhysRevD.96.024006)
- Abbott, B. P. et al. 2017. GW170104: Observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Physical Review Letters 118(22), article number: 221101. (10.1103/PhysRevLett.118.221101)
- Abbott, B. P. et al. 2017. Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity 34(10), pp. -., article number: 104002. (10.1088/1361-6382/aa6854)
- Abbott, B. et al. 2017. Calibration of the advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. Physical Review D 95, article number: 62003. (10.1103/PhysRevD.95.062003)
- Abbott, B. et al. 2017. Upper limits on the stochastic gravitational-wave background from advanced LIGO's first observing run. Physical Review Letters 118(12) (10.1103/PhysRevLett.118.121101)
- Abbott, B. et al. 2017. Directional limits on persistent gravitational waves from advanced LIGO's first observing run. Physical Review Letters 118, pp. -., article number: 121102. (10.1103/PhysRevLett.118.121102)
- Jiménez-Forteza, X., Keitel, D., Husa, S., Hannam, M., Khan, S. and Pürrer, M. 2017. Hierarchical data-driven approach to fitting numerical relativity data for nonprecessing binary black holes with an application to final spin and radiated energy. Physical Review D 95(6), pp. -., article number: 64024. (10.1103/PhysRevD.95.064024)
- Abbott, B. P. et al. 2017. Exploring the sensitivity of next generation gravitational wave detectors. Classical and Quantum Gravity 34(4), article number: 44001. (10.1088/1361-6382/aa51f4)
- Abbott, B. P. et al. 2017. The basic physics of the binary black hole merger GW150914. Annelen der Physik 529(1-2), article number: 1600209. (10.1002/andp.201600209)
2016
- Abbott, B. P. et al. 2016. Binary black hole mergers in the first advanced LIGO observing run. Physical Review X 6(4), article number: 41015. (10.1103/PhysRevX.6.041015)
- Abbott, B. P. et al. 2016. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity 19, article number: 1. (10.1007/lrr-2016-1)
- Abbott, B. P. et al. 2016. Improved analysis of GW150914 using a fully spin-precessing waveform model. Physical Review X 6(4), pp. -., article number: 41014. (10.1103/PhysRevX.6.041014)
- Abbott, B. P. et al. 2016. Upper limits on the rates of binary neutron star and neutron star-black hole mergers from advanced Ligo's first observing run. Astrophysical Journal Letters 832(2), pp. -., article number: L21. (10.3847/2041-8205/832/2/L21)
- Abbott, B. P. et al. 2016. First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D 94(10), pp. -., article number: 102001. (10.1103/PhysRevD.94.102001)
- Abbott, B. P. et al. 2016. Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D 94(4), pp. -., article number: 42002. (10.1103/PhysRevD.94.042002)
- Abbott, B. P. et al. 2016. Localization and broadband follow-up of the gravitational-wave transient GW150914. Astrophysical Journal Letters 826(1), pp. -., article number: L13. (10.3847/2041-8205/826/1/L13)
- Abbott, B. P. et al. 2016. Supplement: 'Localization and broadband follow-up of the gravitational-wave transient GW150914' (2016, ApJL, 826, l13). Astrophysical Journal Supplement 225(1), pp. 1-15. (10.3847/0067-0049/225/1/8)
- Abbott, B. P. et al. 2016. Properties of the binary black hole merger GW150914. Physical Review Letters 116(24), article number: 241102. (10.1103/PhysRevLett.116.241102)
- Abbott, B. P. et al. 2016. GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Physical Review Letters 116(24), article number: 241103. (10.1103/PhysRevLett.116.241103)
- Abbott, B. P. et al. 2016. GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D 93(12), article number: 122003. (10.1103/PhysRevD.93.122003)
- Abbott, B. P. et al. 2016. Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D 93(12), article number: 122004. (10.1103/PhysRevD.93.122004)
- Adrián-Martínez, S. et al. 2016. High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D 93(12), article number: 122010. (10.1103/PhysRevD.93.122010)
- Abbott, B. P. et al. 2016. Search for transient gravitational waves in coincidence with short-duration radio transients during 2007-2013. Physical Review D 93(12), pp. -., article number: 122008. (10.1103/PhysRevD.93.122008)
- Abbott, B. P. et al. 2016. Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity 33(13), article number: 134001. (10.1088/0264-9381/33/13/134001)
- Abbott, B. P. et al. 2016. Tests of general relativity with GW150914. Physical Review Letters 116(22), article number: 221101. (10.1103/PhysRevLett.116.221101)
- Pürrer, M., Hannam, M. and Ohme, F. 2016. Can we measure individual black-hole spins from gravitational-wave observations?. Physical Review D 93(8), article number: 84042. (10.1103/PhysRevD.93.084042)
- Abbott, B. P. et al. 2016. GW150914: implications for the stochastic gravitational wave background from binary black holes. Physical Review Letters 116, article number: 131102. (10.1103/PhysRevLett.116.131102)
- Adams, T. et al. 2016. Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review d Particles and Fields 93(4), article number: 42006. (10.1103/PhysRevD.93.042006)
- Khan, S., Husa, S., Hannam, M., Ohme, F., Purrer, M., Jiménez Forteza, X. and Bohé, A. 2016. Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era. Physical Review D 93(4), article number: 44007. (10.1103/PhysRevD.93.044007)
- Husa, S., Khan, S., Hannam, M., Puerrer, M., Ohme, F., Forteza, X. J. and Bohé, A. 2016. Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal. Physical Review D - Particles, Fields, Gravitation and Cosmology 93(4), article number: 44006. (10.1103/PhysRevD.93.044006)
- Coughlin, S. B. et al. 2016. All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D. 93(4), article number: 42005. (10.1103/PhysRevD.93.042005)
- Aasi, J. et al. 2016. First low frequency all-sky search for continuous gravitational wave signals. Physical Review D 93(4), article number: 42007. (10.1103/PhysRevD.93.042007)
- Abbott, B. P. et al. 2016. Observation of gravitational waves from a binary black hole merger. Physical Review Letters 116(6), article number: 61102. (10.1103/PhysRevLett.116.061102)
2015
- Adams, T. et al. 2015. Searches for continuous gravitational waves from nine young supernova remnants. The Astrophysical Journal 813(1), article number: 39. (10.1088/0004-637X/813/1/39)
- Adams, T. et al. 2015. Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review d Particles and Fields 91(6), article number: 62008. (10.1103/PhysRevD.91.062008)
- Aasi, J. et al. 2015. Advanced LIGO. Classical and Quantum Gravity 32(7), article number: 74001. (10.1088/0264-9381/32/7/074001)
- Aasi, J. et al. 2015. Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D 91, article number: 22004. (10.1103/PhysRevD.91.022004)
- Schmidt, P., Ohme, F. and Hannam, M. 2015. Towards models of gravitational waveforms from generic binaries: II. Modelling precession effects with a single effective precession parameter. Physical Review D 91(2), article number: 24043. (10.1103/PhysRevD.91.024043)
2014
- Hannam, M. et al. 2014. Simple model of complete precessing black-hole-binary gravitational waveforms. Physical Review Letters 113(15), article number: 151101. (10.1103/PhysRevLett.113.151101)
- Hannam, M. 2014. Modelling gravitational waves from precessing black-hole binaries: progress, challenges and prospects. General Relativity and Gravitation 46(9), article number: 1767. (10.1007/s10714-014-1767-2)
- Aasi, J. et al. 2014. Search for gravitational waves associated with gamma-ray bursts detected by the interplanetary network. Physical Review Letters 113(1), article number: 11102. (10.1103/PhysRevLett.113.011102)
- Aasi, J. et al. 2014. Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. Physical Review D - Particles, Fields, Gravitation and Cosmology 89, pp. -., article number: 122004. (10.1103/PhysRevD.89.122004)
- Aasi, J. et al. 2014. The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity 31(11), article number: 115004. (10.1088/0264-9381/31/11/115004)
- Varma, V., Ajith, P., Husa, S., Bustillo, J. C., Hannam, M. and Puerrer, M. 2014. Gravitational-wave observations of binary black holes: Effect of nonquadrupole modes. Physical Review D - Particles, Fields, Gravitation and Cosmology 90(12), pp. -., article number: 124004. (10.1103/PhysRevD.90.124004)
2013
- Hinder, I. et al. 2013. Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration. Classical and Quantum Gravity 31(2), pp. -., article number: 25012. (10.1088/0264-9381/31/2/025012)
- Pürrer, M., Hannam, M., Ajith, P. and Husa, S. 2013. Testing the validity of the single-spin approximation in inspiral-merger-ringdown waveforms. Physical Review D: Particles, Fields, Gravitation, and Cosmology 88(6), article number: 64007. (10.1103/PhysRevD.88.064007)
- Baird, E., Fairhurst, S., Hannam, M. and Murphy, P. 2013. Degeneracy between mass and spin in black-hole-binary waveforms. Physical Review D 87(2), article number: 24035. (10.1103/PhysRevD.87.024035)
- Hannam, M., Brown, D. A., Fairhurst, S., Fryer, C. L. and Harry, I. W. 2013. When can gravitational-wave observations distinguish between black holes and neutron stars?. Astrophysical Journal Letters 766(1), article number: L14. (10.1088/2041-8205/766/1/L14)
- Pürrer, M., Hannam, M., Ajith, P. and Husa, S. 2013. Testing the validity of the single-spin approximation in inspiral-merger-ringdown waveforms. Physical Review D 88(6), article number: 64007. (10.1103/PhysRevD.88.064007)
2012
- Kamaretsos, I., Hannam, M. and Sathyaprakash, B. S. 2012. Is black-hole ringdown a memory of its progenitor?. Physical Review Letters 109(14), article number: 141102. (10.1103/PhysRevLett.109.141102)
- Kamaretsos, I., Hannam, M., Husa, S. and Sathyaprakash, B. S. 2012. Black-hole hair loss: learning about binary progenitors from ringdown signals. Physical Review D 85(2), article number: 24018. (10.1103/PhysRevD.85.024018)
- Pürrer, M., Husa, S. and Hannam, M. 2012. An efficient iterative method to reduce eccentricity in numerical-relativity simulations of compact binary inspiral. Physical Review D 85(12), pp. 124051-124076. (10.1103/PhysRevD.85.124051)
- Ajith, P. et al. 2012. The NINJA-2 catalog of hybrid post-Newtonian/numerical-relativity waveforms for non-precessing black-hole binaries. Classical and Quantum Gravity 29(12), article number: 124001. (10.1088/0264-9381/29/12/124001)
- Sathyaprakash, B. S. et al. 2012. Scientific objectives of Einstein Telescope. Classical and Quantum Gravity 29(12), article number: 124013. (10.1088/0264-9381/29/12/124013)
- Schmidt, P., Hannam, M. and Husa, S. 2012. Towards models of gravitational waveforms from generic binaries: A simple approximate mapping between precessing and nonprecessing inspiral signals. Physical Review D 86(10), article number: 104063 (. (10.1103/PhysRevD.86.104063)
2011
- Ohme, F., Hannam, M. and Husa, S. 2011. Reliability of complete gravitational waveform models for compact binary coalescences. Physical Review D 84(6), article number: 64029. (10.1103/PhysRevD.84.064029)
- Ohme, F., Hannam, M. and Husa, S. 2011. Reliability of complete gravitational waveform models for compact binary coalescences. Physical Review D 84(6), article number: 64029. (10.1103/PhysRevD.84.064029)
- Schmidt, P., Hannam, M., Husa, S. and Ajith, P. 2011. Tracking the precession of compact binaries from their gravitational-wave signal. Physical Review D 84(2), article number: 24046. (10.1103/PhysRevD.84.024046)
- Hild, S. et al. 2011. Sensitivity studies for third-generation gravitational wave observatories. Classical and Quantum Gravity 28(9), article number: 94013. (10.1088/0264-9381/28/9/094013)
- Ajith, P. et al. 2011. Inspiral-merger-ringdown waveforms for black-hole binaries with nonprecessing spins. Physical Review Letters 106(24), article number: 241101. (10.1103/PhysRevLett.106.241101)
- Hannam, M. and Hawke, I. 2011. Numerical relativity simulations in the era of the Einstein Telescope. General Relativity and Gravitation 43(2), pp. 465-483. (10.1007/s10714-010-1008-2)
- Sathyaprakash, B. S. et al. 2011. Scientific potential of Einstein Telescope. Presented at: Rencontres de Moriond, Gravitational Waves and Experimental Gravity, La Thuile, Italy, 3-10 March 2012 Presented at Auge, E., Dumarchez, J. and Tran Thanh Van, J. eds.Proceedings of the 47th Rencontres de Moriond, Gravitational Waves and Experimental Gravity, La Thuile, Italy, 3-10 March 2012. Vietnam: The Gioi Publishers
2010
- Hannam, M., Husa, S., Ohme, F. and Ajith, P. 2010. Length requirements for numerical-relativity waveforms. Physical Review D 82(12), article number: 124052. (10.1103/PhysRevD.82.124052)
- Hannam, M., Husa, S., Ohme, F., Muller, D. and Brugmann, B. 2010. Simulations of black-hole binaries with unequal masses or nonprecessing spins: Accuracy, physical properties, and comparison with post-Newtonian results. Physical Review D 82(12), article number: 124008. (10.1103/PhysRevD.82.124008)
- Hannam, M., Husa, S., Ohme, F., Müller, D. and Brügmann, B. 2010. Simulations of black-hole binaries with unequal masses or nonprecessing spins: Accuracy, physical properties, and comparison with post-Newtonian results. Physical Review D 82(12), article number: 124008. (10.1103/PhysRevD.82.124008)
- Santamarıa, L. et al. 2010. Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries. Physical Review D 82(6), article number: 64016. (10.1103/PhysRevD.82.064016)
- Santamaría, L. et al. 2010. Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries. Physical Review D 82(6), article number: 64016. (10.1103/PhysRevD.82.064016)
2009
- Hannam, M., Husa, S. and Murchadha, N. ?. 2009. Bowen-York trumpet data and black-hole simulations. Physical Review D 80(12), article number: 124007. (10.1103/PhysRevD.80.124007)
- Ohme, F., Hannam, M., Husa, S. and Murchadha, N. O. 2009. Stationary hyperboloidal slicings with evolved gauge conditions. Classical and Quantum Gravity 26(17), article number: 175014. (10.1088/0264-9381/26/17/175014)
- Ohme, F., Hannam, M., Husa, S. and Murchadha, N. ?. 2009. Stationary hyperboloidal slicings with evolved gauge conditions. Classical and Quantum Gravity 26(17), article number: 175014. (10.1088/0264-9381/26/17/175014)
- Ajith, P. et al. 2009. Template bank for gravitational waveforms from coalescing binary black holes: Nonspinning binaries [Phys. Rev. DPRVDAQ1550-7998 77, 104017 (2008)] [Erratum]. Physical Review D 79(12), article number: 129901(E). (10.1103/PhysRevD.79.129901)
- Hannam, M. 2009. Status of black-hole-binary simulations for gravitational-wave detection. Classical and Quantum Gravity 26(11), article number: 114001. (10.1088/0264-9381/26/11/114001)
- Hannam, M. et al. 2009. Samurai project: Verifying the consistency of black-hole-binary waveforms for gravitational-wave detection. Physical Review D 79(8), article number: 84025. (10.1103/PhysRevD.79.084025)
2008
- Hannam, M., Husa, S., Brügmann, B. and Gopakumar, A. 2008. Comparison between numerical-relativity and post-Newtonian waveforms from spinning binaries: The orbital hang-up case. Physical Review D 78(10), article number: 104007. (10.1103/PhysRevD.78.104007)
- Hannam, M., Husa, S., Ohme, F., Brugmann, B. and Murchadha, N. O. 2008. Wormholes and trumpets: Schwarzschild spacetime for the moving-puncture generation. Physical Review D 78(6), article number: 64020. (10.1103/PhysRevD.78.064020)
- Gopakumar, A., Hannam, M., Husa, S. and Brügmann, B. 2008. Comparison between numerical relativity and a new class of post-Newtonian gravitational-wave phase evolutions: The nonspinning equal-mass case. Physical Review D 78(6), article number: 64026. (10.1103/PhysRevD.78.064026)
- Hannam, M., Husa, S., Ohme, F., Brügmann, B. and Ó Murchadha, N. 2008. Wormholes and trumpets: Schwarzschild spacetime for the moving-puncture generation. Physical Review D 78(6), article number: 64020. (10.1103/PhysRevD.78.064020)
- Damour, T., Nagar, A., Hannam, M., Husa, S. and Brügmann, B. 2008. Accurate effective-one-body waveforms of inspiralling and coalescing black-hole binaries. Physical Review D 78(4), article number: 44039. (10.1103/PhysRevD.78.044039)
- Ajith, P. et al. 2008. Template bank for gravitational waveforms from coalescing binary black holes: Nonspinning binaries. Physical Review D 77(10), article number: 104017. (10.1103/PhysRevD.77.104017)
- Husa, S., González, J. A., Hannam, M., Brügmann, B. and Sperhake, U. 2008. Reducing phase error in long numerical binary black hole evolutions with sixth-order finite differencing. Classical and Quantum Gravity 25(10), article number: 105006. (10.1088/0264-9381/25/10/105006)
- Husa, S., Hannam, M., González, J., Sperhake, U. and Brügmann, B. 2008. Reducing eccentricity in black-hole binary evolutions with initial parameters from post-Newtonian inspiral. Physical Review D 77(4), article number: 44037. (10.1103/PhysRevD.77.044037)
- Brügmann, B., González, J. A., Hannam, M., Husa, S., Sperhake, U. and Tichy, W. 2008. Calibration of moving puncture simulations. Physical Review. D, Particles and Fields 77(2), article number: 24027. (10.1103/PhysRevD.77.024027)
- Hannam, M., Husa, S., González, J. A., Sperhake, U. and Brügmann, B. 2008. Where post-Newtonian and numerical-relativity waveforms meet. Physical Review. D, Particles and Fields 77(4), article number: 44020. (10.1103/PhysRevD.77.044020)
- Brügmann, B., González, J. A., Hannam, M., Husa, S. and Sperhake, U. 2008. Exploring black hole superkicks. Physical Review. D, Particles and Fields 77(12), article number: 124047. (10.1103/PhysRevD.77.124047)
- Babak, S., Hannam, M., Husa, S. and Schutz, B. F. 2008. Resolving Super Massive Black Holes with LISA. [Online]. arXiv. Available at: https://arxiv.org/abs/0806.1591
- Sperhake, U., Brügmann, B., González, J. A., Hannam, M. and Husa, S. 2008. Head-on collisions of different initial data. Presented at: 11th Marcel Grossmann Meeting on General Relativity, Berlin, Germany, 23-29 July 2006 Presented at Kleinert, H. and Jantzen, R. T. eds.The 11th Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, Proceedings of the MG11 Meeting, Part 1, Berline, Germany, 23-29 July 2006. Singapore: World Scientific Publishing pp. 1612-1614., (10.1142/9789812834300_0210)
2007
- Hannam, M., Husa, S., Pollney, D., Brügmann, B. and Murchadha, N. ?. 2007. Geometry and Regularity of Moving Punctures. Physical Review Letters 99(24), article number: 241102. (10.1103/PhysRevLett.99.241102)
- Berti, E., Cardoso, V., Gonzalez, J., Sperhake, U., Hannam, M., Husa, S. and Brügmann, B. 2007. Inspiral, merger, and ringdown of unequal mass black hole binaries: A multipolar analysis. Physical Review D 76(6), article number: 64034. (10.1103/PhysRevD.76.064034)
- Ajith, P. et al. 2007. A phenomenological template family for black-hole coalescence waveforms. Classical and Quantum Gravity 24(19), article number: S689. (10.1088/0264-9381/24/19/S31)
- González, J. A., Hannam, M., Sperhake, U., Brügmann, B. and Husa, S. 2007. Supermassive recoil velocities for binary black-hole mergers with antialigned spins. Physical Review Letters 98(23), article number: 231101. (10.1103/PhysRevLett.98.231101)
- Marronetti, P., Tichy, W., Brügmann, B., González, J., Hannam, M., Husa, S. and Sperhake, U. 2007. Binary black holes on a budget: simulations using workstations. Classical and Quantum Gravity 24(12), article number: S43. (10.1088/0264-9381/24/12/S05)
- Hannam, M., Husa, S., Brügmann, B., González, J. A. and Sperhake, U. 2007. Beyond the Bowen-York extrinsic curvature for spinning black holes. Classical and Quantum Gravity 24(12), pp. S15-S24. (10.1088/0264-9381/24/12/S02)
- González, J. A., Sperhake, U., Brügmann, B., Hannam, M. and Husa, S. 2007. Maximum kick from nonspinning black-hole binary inspiral. Physical Review Letters 98(9), article number: 91101. (10.1103/PhysRevLett.98.091101)
- Hannam, M., Husa, S., Brügmann, B., González, J. A., Sperhake, U. and Murchadha, N. ?. 2007. Where do moving punctures go?. Journal of Physics. Conference Series 66, article number: 12047. (10.1088/1742-6596/66/1/012047)
- Ajith, P. et al. 2007. Data formats for numerical relativity waves. [Online]. arXiv. Available at: http://arxiv.org/abs/0709.0093
2006
- Campanelli, M., Dettwyler, M., Hannam, M. and Lousto, C. 2006. Relativistic three-body effects in black hole coalescence. Physical Review D 74(8), article number: 87503. (10.1103/PhysRevD.74.087503)
2005
- Hannam, M. 2005. Quasicircular orbits of conformal thin-sandwich puncture binary black holes. Physical Review D 72(4), article number: 44025. (10.1103/PhysRevD.72.044025)
- Hannam, M. D. and Cook, G. B. 2005. Conformal thin-sandwich puncture initial data for boosted black holes. Physical Review D 71(8), article number: 84023. (10.1103/PhysRevD.71.084023)
2003
- Hannam, M., Evans, C., Cook, G. and Baumgarte, T. 2003. Can a combination of the conformal thin-sandwich and puncture methods yield binary black hole solutions in quasiequilibrium?. Physical Review D 68(6), article number: 64003. (10.1103/PhysRevD.68.064003)
1999
- Hannam, M. and Thompson, W. J. 1999. Estimating small signals by using maximum likelihood and Poisson statistics. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 431(1-2), pp. 239-251. (10.1016/S0168-9002(99)00269-7)
1998
- Mashhoon, B., Neutze, R., Hannam, M. and Stedman, G. E. 1998. Observable frequency shifts via spin-rotation coupling. Physics letters. A. 249(3), pp. 161-166. (10.1016/S0375-9601(98)00729-4)
I solve Einstein's equations of general relativity on a computer, to calculate what happens when black holes collide. The main application currently is to use those results to produce theoretical models of the GW signals from black-hole collisions, and in turn to use those to find such signals in detector data, and to measure the properties of the source.
Numerical Relativity and Gravitational-Wave Astronomy
Numerical Relativity involves solving Einstein's equations of general relativity on a computer, and one of the most exciting current applications is to model two black holes that orbit each other, inspiral together, and merge to form a single black hole.
The reason this is so topical is that these simulations are the only way to predict the gravitational-wave signal from black-hole mergers, which provided the first direct gravitational-wave observations by LIGO in 2015 -- and indeed, all of the detections so far.
Our gravitational-wave signal models were used to decipher the properties of those first direct gravitational-wave detections. As the detectors become more sensitive, and we are able to extract more detailed information from gravitational-wave signals, we need to move beyond the simple approximate models that we have developed so far, and construct precision models that capture all of the physics of black-hole-binary systems.
Supervision
I currently supervise:
- Gernot Heissel (2013-)
- Chinmay Kalaghatgi (2015-)
- Ed Fauchon-Jones (2015-)
- Eleanor Hamilton (2016-)
- Dave Yeeles (2017-).
Past projects
My previous students Patricia Schmidt (2010-14) and Sebastian Khan (2012-16) went on to postdoc positions at Caltech and Radboud University, and the Albert-Einstein-Institute, Hannover.