
Dr Manoj Kesaria
Senior Lecturer
Condensed Matter and Photonics Group
- kesariam@cardiff.ac.uk
- +44(0)2920875255
- Room N/0.09 Queen's Building, The Parade, CF24 3AA and Room 1.05 in TRH and , Translational Research Hub, Maindy Road, Cathays, Cardiff, CF24 4HQ
- Available for postgraduate supervision
Overview
M.IN.D (Manoj Infrared Detector's) foundry
Centre for research and development of low-dimensional heterostructures & quantum materials for detectors
MIND foundry is a research and development (R&D) team. We work on group III-Nitride (GaN based) and III-Antimonide (GaSb based) quantum materials for infrared detectors spanning from 1 µm (SWIR) to 14 µm (LWIR) wavelength range.
If you are interested in collaborating with the MIND foundry, please contact me...
News:
Outreach talk: College Lecture: Dr Manoj Kesaria | Howell's Co-ed College (gdst.net)
Guest editor (MK) - Scientific Reports - Collection - "Superlattices and Multilayers" Superlattices and Multilayers (nature.com)
Biography
Senior Lecturer/Associate Professor (August 2021 onward)
Lecturer/Assistant Professor (July 2018 - July 2021)
Group leader of the M.IN.D foundry (July 2020 onward)
CMP group outreach representative.
My Expertise:
Device Epitaxy: Molecular Beam Epitaxy (MBE) for the growth of GaN and GaSb based alloys, low dimensional quantum hetero-structures for near and mid-infrared emitters and detectors.
Device Fabrication: III-Sb based LED, resonant tunnelling diodes (RTD), photodiodes, avalanche photodiodes (APD) and linear array.
Honours and awards
2021- Fellowship of Higher Education Academey (FHEA), U.K., awarded by Advanced Higher Education Academy, UK.
Professional memberships
Member of IOP
Member of IEEE
Academic positions
2018– 2021: Lecturer/Assistant Professor, School of Physics and Astronomy, Cardiff University.
2013–2018: Senior Research Associate at Lancaster University & University of Sheffield.
2012–2013: Research Scientist, University of Houston, Texas and Integrated Micro Sensors Inc (Houston)
2008–2012: Senior Research Fellow and Research Associate, International Centre for Material Science, JNCASR, Bangalore, India
2006–2008: Junior Research Fellow, National Physical Laboratory, New Delhi, India
I have worked as a senior research assocate on EPSRC projects (prior to 2018)
EP/J015849/1 “InAsNSb Dilute Nitride Materials for Mid-infrared Devices & Applications”
EP/M013707/1 “TPVs for Waste Heat Recovery in Energy Resilient Manufacturing”.
Speaking engagements
2022- Invited talk- Emerging type-II superlattice (T2SL) for infrared detectors
Industry Technology Program - Photon 2022 (IOP), Nottingham, U.K. Photon 2022
2021- Invited talk- Emerging III-Antimonides for infrared detection
Symposium- Compound Semiconductor (CS) and devices
IWPSD 2021- XXI International Workshop on Physics of Semiconductor Devices, Delhi,IIndia
14 - 17 December, 2021. IWPSD 2021 (online)
2020: Invited talk -On-chip monolithic Integration of III-Nitrides lasers and photodiode for telecoms
Symposium - WIDE BAND-GAP SEMICONDUCTORS, DEVICES AND APPLICATIONS
IEEE-ICEE 2020- 5th International Conference on Emerging Electronics, Delhi, India, 26-28, Nov, 2020. ICEE 2020 (online)
Committees and reviewing
Guest editor - Scientific Reports - Collection - "Superlattices and Multilayers" Superlattices and Multilayers (nature.com)
Editorial board Member- Nanotechnology- Scientific Reports. Editors | Scientific Reports (cardiff.ac.uk)
Co-guest editor: IET special issue on " Semiconductor Integrated Opto-Electronics 2022 (SOE 2022)
Grant reviewer, EPSRC (2018 onward)
Jounral reviewer (2013 onward):
- Nature research journal: Scientific reports (Editorial Board Member- Physics- Nanotechnology)
- AIP journals: Applied Physics Letters, Journal of Applied Physics, AIP Advances, Journal of Vaccum Science and Technology (B),
- IOP journals: Materials Research Express and Semiconductor Science and Technology
- Springer journals: Journal of Material Science, Nanoscale Research Letters and
- Wiley’s Physics Status Solidi B: Basic Solid State Physics.
Publications
2023
- Alshahrani, D. et al. 2023. Effect of interfacial schemes on the optical and structural properties of InAs/GaSb type-ii superlattices. ACS Applied Materials and Interfaces 15(6), pp. 8624-8635. (10.1021/acsami.2c19292)
2022
- Kwan, D. C. M. et al. 2022. Monolithic integration of a 10 μm cut-off wavelength InAs/GaSb type-II superlattice diode on GaAs platform. Scientific Reports 12(1), article number: 11616. (10.1038/s41598-022-15538-3)
- Alshahrani, D. O., Kesaria, M., Anyebe, E. A., Srivastava, V. and Huffaker, D. L. 2022. Emerging type-II superlattices of InAs/InAsSb and InAs/GaSb for mid-wavelength infrared photodetectors. Advanced Photonics Research 3(2), article number: 2100094. (10.1002/adpr.202100094)
2021
- Kwan, D., Kesaria, M., Anyebe, E. and Huffaker, D. 2021. Recent trends in 8-14 µm type-II superlattice infrared detectors. Infrared Physics and Technology 116, article number: 103756. (10.1016/j.infrared.2021.103756)
- Kesaria, M., Alshahrani, D., Kwan, D., Anyebe, E. and Srivastava, V. 2021. Optical and electrical performance of 5 µm InAs/GaSb Type-II superlattice for NOx sensing application. Materials Research Bulletin 142, article number: 111424. (10.1016/j.materresbull.2021.111424)
- Kwan, D. C. M., Kesaria, M., Anyebe, E. A., Alshahrani, D. O., Delmas, M., Liang, B. L. and Huffaker, D. L. 2021. Optical and structural investigation of a 10 μm InAs/GaSb type-II superlattice on GaAs. Applied Physics Letters 118(20), article number: 203102. (10.1063/5.0045703)
- Anyebe, E. A. and Kesaria, M. 2021. Recent advances in the Van der Waals epitaxy growth of III‐V semiconductor nanowires on graphene. Nano Select 2(4), pp. 688-711. (10.1002/nano.202000142)
- Ahmed, J. et al. 2021. Theoretical analysis of AlAs0.56Sb0.44 single photon avalanche diodes with high breakdown probability. IEEE Journal of Quantum Electronics 57(2), article number: 4500206. (10.1109/JQE.2021.3058356)
2020
- Anyebe, E. A., Kesaria, M., Sanchez, A. M. and Zhuang, Q. 2020. A comparative study of graphite and silicon as suitable substrates for the self-catalysed growth of InAs nanowires by MBE. Applied Physics A: Materials Science and Processing 126(6), article number: 427. (10.1007/s00339-020-03609-z)
- Di Paola, D. M., Lu, Q., Repiso, E., Kesaria, M., Makarovsky, O., Krier, A. and Patanè, A. 2020. Room temperature upconversion electroluminescence from a mid-infrared In(AsN) tunneling diode. Applied Physics Letters 116(14), article number: 142108. (10.1063/5.0002407)
2019
- Anyebe, E. A. and Kesaria, M. 2019. Photoluminescence characteristics of zinc blende InAs nanowires. Scientific Reports 9, article number: 17665. (10.1038/s41598-019-54047-8)
- Sharpe, M. K. et al. 2019. A comparative study of epitaxial InGaAsBi/InP structures using Rutherford backscattering spectrometry, X-ray diffraction and photoluminescence techniques. Journal of Applied Physics 126(12), article number: 125706. (10.1063/1.5109653)
2018
- Kumar, P., Tuteja, M., Kesaria, M., Waghmare, U. V. and Shivaprasad, S. M. 2018. Superstructure of self-aligned hexagonal GaN nanorods formed on nitrided Si(111) surface. Applied Physics Letters 101(13), pp. 131605. (10.1063/1.4751986)
- Keen, J., Repiso, E., Lu, Q., Kesaria, M., Marshall, A. and Krier, A. 2018. Electroluminescence and photoluminescence of type-II InAs/InAsSb strained-layer superlattices in the mid-infrared. Infrared Physics & technology 93, pp. 375-380. (10.1016/j.infrared.2018.08.001)
- Paola, D. et al. 2018. Optical detection and spatial modulation of mid‐infrared surface plasmon polaritons in a highly doped semiconductor. Advanced Optical Materials 6, pp. 1700492-1700499. (10.1002/adom.201700492)
- Keen, J. A., Lane, D., Kesaria, M., Marshall, A. R. J. and Krier, A. 2018. InAs/InAsSb type-II strained-layer superlattices for mid-infrared LEDs. Journal of Physics D: Applied Physics 51(7), pp. 075103-075112. (10.1088/1361-6463/aaa60e/meta)
2016
- Velichko, A. et al. 2016. Highly-mismatched InAs/InSe heterojunction diodes. Applied Physics Letters 109(18), article number: 182115. (10.1063/1.4967381)
- Kesaria, M., de la Mare, M. and Krier, A. 2016. Room temperature mid-infrared InAsSbN multi-quantum well photodiodes grown by MBE. Journal of Physics D: Applied Physics 49(43), article number: 435107. (10.1088/0022-3727/49/43/435107)
- Di Paola, D. M. et al. 2016. Resonant Zener tunnelling via zero-dimensional states in a narrow gap diode. Scientific Reports 6, article number: 32039. (10.1038/srep32039)
- Debnath, A., Gandhi, J. S., Kesaria, M., Pillai, R., Starikov, D. and Bensaoula, A. 2016. Effect of N-2* and N on GaN nanocolumns grown on Si(111) by molecular beam epitaxy. Journal of Applied Physics 119(10), article number: 104302. (10.1063/1.4943179)
2015
- Krier, A. et al. 2015. Low bandgap mid-infrared thermophotovoltaic arrays based on InAs. Infrared Physics and Technology 73, pp. 126-129. (10.1016/j.infrared.2015.09.011)
- Birindelli, S. et al. 2015. Peculiarities of the hydrogenated In(AsN) alloy. Semiconductor Science and Technology 30(10), article number: 105030. (10.1088/0268-1242/30/10/105030)
- Wheatley, R. et al. 2015. Extended wavelength mid-infrared photoluminescence from type-I InAsN and InGaAsN dilute nitride quantum wells grown on InP. Applied Physics Letters 106(23), article number: 232105. (10.1063/1.4922590)
- Bhasker, H. P., Thakur, V., Kesaria, M., Shivaprasad, S. M. and Dhar, S. 2015. Transport and optical properties of c-axis oriented wedge shaped GaN nanowall network grown by molecular beam epitaxy. AIP Conference Proceedings 1583, pp. 252-258. (10.1063/1.4865647)
- Kesaria, M., Birindelli, S., Velichko, A. V., Zhuang, Q. D., Patane, A., Capizzi, M. and Krier, A. 2015. In(AsN) mid-infrared emission enhanced by rapid thermal annealing. Infrared Physics and Technology 68, pp. 138-142. (10.1016/j.infrared.2014.11.016)
2014
- Anyebe, E. A., Zhuang, Q., Kesaria, M. and Krier, A. 2014. The structural evolution of InN nanorods to microstructures on Si (111) by molecular beam epitaxy. Semiconductor Science and Technology 29(8), article number: 85010. (10.1088/0268-1242/29/8/085010)
- Lu, Q., Zhuang, Q., Marshall, A., Kesaria, M., Beanland, R. and Krier, A. 2014. InSb quantum dots for the mid-infrared spectral range grown on GaAs substrates using metamorphic InAs buffer layers. Semiconductor Science and Technology 29(7), article number: 75011. (10.1088/0268-1242/29/7/075011)
2013
- Negi, D., Loukya, B., Dileep, K., Kesaria, M., Kumar, N. and Datta, R. 2013. Characterization of structure and magnetism in Zn1-x(Cox/Mnx)O epitaxial thin films as a function of composition. Superlattices and Microstructures 63, pp. 289. (10.1016/j.spmi.2013.09.007)
- Thakur, V., Kesaria, M. and Shivaprasad, S. 2013. Enhanced band edge luminescence from stress and defect free GaN nanowall network morphology. Solid State Communications 171, pp. 8. (10.1016/j.ssc.2013.07.012)
- Shetty, S., Kesaria, M., Ghatak, J. and Shivaprasad, S. M. 2013. The origin of shape, orientation, and structure of spontaneously formed wurtzite GaN nanorods on Cubic Si(001) surface. Crystal Growth and Design 13(6), pp. 2407. (10.1021/cg4000928)
2012
- Bhasker, H. P., Dhar, S., Sain, A., Kesaria, M. and Shivaprasad, S. M. 2012. High electron mobility through the edge states in random networks of c-axis oriented wedge-shaped GaN nanowalls grown by molecular beam epitaxy. Applied Physics Letters 101(13), pp. 132109. (10.1063/1.4755775)
- Kumar, P., Tangi, M., Shetty, S., Kesaria, M. and Shivaprasad, S. M. 2012. Growth of aligned wurtzite GaN nanorods on Si(111): Role of silicon nitride intermediate layer. MRS Online Proceedings Library 1411, pp. 57-62. (10.1557/opl.2012.760)
- Mittra, J. et al. 2012. Role of substrate temperature in the pulsed laser deposition of zirconium oxide thin film. Materials Science Forum 710, pp. 757-761. (10.4028/www.scientific.net/MSF.710.757)
2011
- Kesaria, M., Shetty, S. and Shivaprasad, S. M. 2011. Evidence for dislocation induced spontaneous formation of GaN nanowalls and nanocolumns on bare C-plane sapphire. Crystal Growth and Design 11(11), pp. 4900-4903. (10.1021/cg200749w)
- Kesaria, M., Shetty, S., Cohen, P. and Shivaprasad, S. 2011. Transformation of c-oriented nanowall network to a flat morphology in GaN films on c-plane sapphire. Materials Research Bulletin 46(11), pp. 1811. (10.1016/j.materresbull.2011.07.043)
- Kesaria, M. and Shivaprasad, S. M. 2011. Nitrogen flux induced GaN nanostructure nucleation at misfit dislocations on Al2O3(0001). Applied Physics Letters 99(14), pp. 143105. (10.1063/1.3646391)
- Kesaria, M., Shetty, S. and Shivaprasad, S. 2011. Spontaneous formation of GaN nanostructures by molecular beam epitaxy. Journal of Crystal Growth 326(1), pp. 191-194. (10.1016/j.jcrysgro.2011.01.095)
2009
- Kesaria, M., Kumar, M., Govind, . and Shivaprasad, S. 2009. Effect of Pb adatom flux rate on adlayer coverage for Stranski-Krastanov growth mode on Si(111)7×7 surface. Applied Surface Science 256(2), pp. 576. (10.1016/j.apsusc.2009.08.064)
Teaching
I am a fellow of higher education academy (FHEA), UK.
Module Organiser (MO)- Low Dimensional Semiconductor Devices (MPhys + MSc- PX4221+ PXT 126 )- L7
Deputy Module Organiser (DMO)- Semicondcutor Devices and Applications (PX 3242)- L6
Instructur- Introduction to Compound Semiconductor Photonics (CN0114).
Year 4 (MPhys)/MSc Research Project (PX4310/PXT999)
Year 3 undergraduate physics project (PX3315)
Year 1 Tutor
M.I.N.D (Manoj Infrared Detector's) foundry is a team of:
Crystal growers: Utilize the state-of-the-art Veeco Gen 930 Molecular Beam Epitaxy (MBE) for developing the epitaxy of novel Compound Semiconductors materials and devices.
Device fabrication experts: Design, simulate, model and fabricate detectors in single-pixel and array format using a class 10, 100 and 1000 cleanroom.
MIND team perform epitaxy, theoritical simulation, fabrication/processing of low dimensional hetero-structures, quantum 1D wires, dots (QD), Quantum well (QW), Complex Quantum Wells CQW -Type-II strained layer super-lattice (T2SL) and Digital alloys (DA). Fabricate detectors working in NIR to LWIR wavelength regime for sensing, detection, thermal imaging.
Ongoing research projects:
1) EPSRC Monolithic On-chip Integration of Electronics & Photonics Using III-nitrides for Telecoms
2) Innovate UK -Quantum Electro-optic Detector Technology (QuEoD)
3) Horizon 2020 EU- MSCA-ITN-2020- Innovative Training Network - QUANTIMONY-Quantum Semiconductor Technologies Exploiting Antimony
Facilities:
a) A.D.E (Advanced Detectors Epitaxy) Laboratory- E 0.16, Queen's Building, Cardiff, CF24 3AA.
ADE laboratory has state-of-the-art Veeco Gen 930 MBE reactors dedicated to III-As(Sb) epitaxy with triple-zone valve group V crackers equipped with 3” substrate heater with 12000C temperature operation and ~ 2-degree control. The reactors also ideally suited for undertaking the growth of novel Bi, N containing dilute bismides, dilute Nitrides and highly mismatch alloys (HMA). A Pananlytical XPert high-resolution x-ray diffractometer (HRXRD) with fast 8-inch wafers reciprocal space maps (RSM) capability.
b) A.D.C (Advanced Detector Characterisation) Laboratory-
T- 1.22, Translational Research Hub, Maindy Road, Cathays, Cardiff, CF24 4HQ
ADC laboratory host a complete detector characterisation facility with electrical characterisation tools (picoammeter, LCR meter, semiconductor device analyser, spectrum, and network analysers, noise figure meters and 50 GHz network analyser), FTIR-PL and photo-response set-up and a cryogenic probe station.
Supervision
I am interested in supervising PhD students who are interested in
UV-VIS to LWIR III-Nitrides, III-Antimonides and novel dilute materals.for-
i) Detectors - Photodiodes, Avalanche Photodiode (APD), Single Photon Avalanche Photodiodes (SPAD)
ii) Low dimensional quantum hetero-structures
iii) Thermophotovoltaic (TPV) and solar thermophotovoltaic (SPTV)
Open PhD position (for UK students only)
Current supervision
Past projects
PhD 2023
Supervisor for Dominic Kwan 2023- LONG-WAVELENGTH TYPE-II INAS/GASB SUPERLATTICE INFRARED PHOTODETECTORS
Presently working at Leonardo, Southhampton, U.K.
MSc Project PXT999 and Year 4 MPhs Project PX4310
2020 - 2021
11) Project supervisor for Alfie Ross- Project: III Nitrides nanostructures for energy harvesting
MPhys 2021. Presently a PhD student at University of Sheffield, Sheffield
10) Project supervisor for George Brown- Project: GaN Nanowires For Hydrogen Production Via Solar Water Splitting
MPhys 2021. Working at SPTS Technologies Ltd.
9) Project supervisor for Ann-Kathrin Holzmann Project: Assessing the suitability of InGaN NW for use in PEC cells
MSc 2021. Working at SPTS Technologies Ltd.
2019-2020
8) Project supervisor for Khaya Mtunzi - Project: Morphological Analysis of Gallium Nitride Nanowall Network on Silicon substrates
MSc 2020. Presently a PhD student (CS manufacturing-CDT) at Univesity College London.
7) Project supervisor for Paradeisa O'Dowd Phanis - Project: Type-II InAs/InAsSb Superlattice Long-wave Infrared Detectors
MSc 2020. Presently a PhD student (CS manufacturing-CDT) at Cardiff University.
6) Project supervisor for Joshua Hickman - Project: Understanding formation mechanisms and characterisation of GaN nanowires on Si(001) and Si(111) substrates.
MPhys 2020.
2018-2019
5) Project supervisor for Cian Pari - Project: Characterisation and Analysis of InAs/GaSb Type-II Superlattice- Mid-Wavelength Infrared Detectors
MSc 2019.
4) Project supervisor for Cobi Maynard- Project: GaN nanostrucutres on Silicon for optoelectronics
MPhys 2019. Presently a PhD student (CS manufacturing-CDT) at Cardiff University.
Year 3 - Project (PX3315)
2019-2020
3) Project supervisor for Oliver Pinna Project-GaN nanowires: uncovering their formation mechanisms to achieve high effciency nitride LEDs.
2) Project supervisor for Alfie Ross- Project- A study of GaN nanostructures on Silicon for optoelectronics
2018-2019
1) Project supervisor for Edward Spendlove- Project: A Study of GaN nanostructures on Silicon for optoelectronics