Ewch i’r prif gynnwys

Seminarau

Mae'r cynnwys hwn ar gael yn Saesneg yn unig.

Rydym yn cynnal rhaglen reolaidd o seminarau ar gyfer staff a myfyrwyr.

Cynhelir yr holl seminarau yng Ngogledd Adeiladau’r Frenhines, Ystafell N/3.28 oni ddatgenir fel arall.

Seminarau 2021

Plasmons are excited in metallic nanostructures and have the ability to enhance light intensity by several orders of magnitudes. Due to this property, they have been extensively used for sensing applications. Recently, there has been a renewed interest to couple and dress quantum emitters (such as quantum dots, dye molecules etc) with plasmons. The aim is to generate new photonic platforms for exploring light-matter interactions. The highlight so far has been the demonstration of single molecule strong coupling with plasmons at room temperature [1]. In my talk, I will briefly introduce plasmons and give a quick overview of the most recent work in the field of Quantum Plasmonics. I will then explain the plasmon properties that allow strong coupling at room temperature and demonstrate the unique properties of nano-cavities [2,3]. I will present my work that focuses on understanding the photonic modes in plasmonic nanocavities [4], the Rabi oscillations of emitters with plasmonic nano-cavities, and their complex coupling with multiple photonic modes of different character [5]. If time permits, I will discuss how one can access specific chemical bonds within a single molecule using plasmons [6].

[1] Chikkaraddy, R., de Nijs B., et al. Nature, 535, 127 (2016)
[2] Kongsuwan, N., Demetriadou A., et al., ACS Photonics, 5, 186 (2018)
[3] Mertens J., Demetriadou A., et al., Nano Letters, 16, 5605 (2016)
[4] Kongsuwan N. , Demetriadou A., et al., ACS Photonics, 7, 463 (2020)
[5] Demetriadou A., Hamm J. et al., ACS Photonics, 4, 2410 (2017)
[6] Benz, F., Schmidt M., et al., Science, 354, 726 (2016)

Zoom link

Meeting ID: 922 8539 2843
Password: 168617

Zoom link
Meeting ID: 829 2884 3353
Password: 780047

Zoom link

Meeting ID: 922 8539 2843
Password: 168617

Zoom link
Meeting ID: 829 2884 3353
Password: 780047

Zoom link

Meeting ID: 922 8539 2843
Password: 168617

The advent of high resolution hydrodynamical cosmological simulations allows us to now study the dynamics of barred galaxies, such as our own Milky Way, within the full ΛCDM cosmological context. I will present what we have learned about the formation history of our galaxy and its inner structures -- such as the bar and the boxy/peanut bulge -- by comparing the chemo-dynamical properties of stellar populations of these inner regions to the Auriga cosmological simulations. In particular, I will present evidence of the almost entirely in-situ formation of the Galaxy's bulge, and of its unusually quiescent merger history. I will also show how studying the dynamics of barred galaxies in cosmological simulations -- in particular the interaction through dynamical friction of the bar and the dark matter halo -- can help us shed light on the amount of dark matter in massive spiral galaxies. I will discuss these findings within the context of the recently reported 'failed feedback problem' as well as within the context of galaxy formation and evolution in general.

Zoom link
Meeting ID: 829 2884 3353
Password: 780047

Zoom link

Meeting ID: 922 8539 2843
Password: 168617

Zoom link

Meeting ID: 922 8539 2843
Password: 168617

Zoom link
Meeting ID: 829 2884 3353
Password: 780047

The symmetry of a material plays a fundamental role in determining its physical properties. Symmetry breaking can modify the physics of a system and produce new and unusual behavior. Superconductivity is one of the best examples of a symmetry-breaking phenomenon. In conventional superconductors, gauge symmetry is broken, while in unconventional superconductors other symmetries may also be broken. In this talk, I present some recent results on Time-Reversal Symmetry Breaking in Unconventional Superconductor.

Zoom link

Meeting ID: 922 8539 2843
Password: 168617

Zoom link

Meeting ID: 922 8539 2843
Password: 168617

Zoom link

Meeting ID: 829 2884 3353
Password: 780047

Zoom link 

Meeting ID: 922 8539 2843
Password: 168617

Zoom link

Meeting ID: 922 8539 2843
Password: 168617

Zoom link

Meeting ID: 829 2884 3353
Password: 780047

Zoom link

Meeting ID: 922 8539 2843
Password: 168617

Seminarau 2020

It seems likely that during the earliest stages of star formation, protostellar discs may be massive enough to be susceptible to a gravitational instability. This will manifest as spiral density waves, which can act to transport angular momentum outwards, potentially playing a key role in the early growth of the central protostar. Additionally, if these discs are very unstable, they may fragment to form bound objects. However, these will tend to be relatively massive objects on wide orbits. In this talk, I will present our current understanding of self-gravitating protostellar discs, the role they may play in star formation, the chances of observing this phase in a protostellar system, and the possibility that direct fragmentation may explain some of the directly imaged, wide-orbit, planetary-mass objects.

I will discuss the origin of an unexpected thermo-refractive noise contribution that we recently identified in nanophotonic waveguides made of amorphous materials [1]. This noise that corresponds to dynamic fluctuations in the picosecond time range sets a fundamental detection limit in photonic integrated circuits, in particular in integrated Raman sensor. Beyond the implications for sensing applications, the presence of this noise is a direct experimental signature of irreversible thermodynamic effects where inertia phenomena cannot be ignored. It also highlights the limits of current theories of thermo-refractive noise at high frequencies. Moreover, the possibility of experimentally accessing the optical spectrum of this noise contribution could be an opportunity to improve our understanding of optical non-linear effects in the presence of dissipation and go beyond models that ignore memory effects.

[1] N. Le Thomas, A. Dhakal, A. Raza, F. Peyskens, R. Baets, “Impact of fundamental thermodynamic fluctuations on light propagating in photonic waveguides made of amorphous materials”, Optica 5, 328-326 (2018).

In this talk I will describe our efforts to combine Low Energy Electron Microscopy (LEEM) and Molecular Beam Epitaxy (MBE) of III-As, and I will demonstrate how LEEM-MBE can provide new information about kinetic mechanisms of (In,Ga)As epitaxy. LEEM enable us to observe the surface of the sample in real time with 5 nm resolution in x/y plane and atomic resolution in z-axis. LEEM contrast provides information about local changes in diffraction conditions and dynamics of atomic steps. Therefore, LEEM enable us to obtain real-time imaging of kinetics of surface phases, changes in strain fields or changes of surface chemical potential of the different elements throughout the sample’s surface [1].

In our recent experiments we have imaged the formation of new terraces on the GaAs(001) surface and develop a technique that combines droplet epitaxy and LEEM to provide a full image of the surface phase diagram of GaAs (001). Our results shed light on the stability of the controversial 6x6 phase on GaAs (001) surfaces which is shown to be metastable during Langmuir evaporation, but can be stable over a narrow range of chemical potential under As flux [2,3]. We show that real-time imaging at growth conditions can be used as feedback to translate formation energy from T-0K to growth temperatures in density- functional theory calculations (Figure 1). Our recent results demonstrate that LEEM-MBE can help provide the missing pieces in the understanding fully epitaxial processes.

[1] E. Bauer, Rep. Prog. Phys. 57, 895 (1994) [2] K. Hannikainen et al. 123, 186102 (2019) [3] C.X. Zheng et al. 3, 124603 (2019) [4] A. Ohtake, Surf. Sci. Rep. 63, 295 (2008).

A new exploration of the Universe has recently started through gravitational-wave observations. On August 17, 2017, the first observation of gravitational waves from the inspiral and merger of a binary neutron-star system by the Advanced LIGO and Virgo network, followed 1.7 s later by a weak short gamma-ray burst detected by the Fermi and INTEGRAL satellites initiated the most extensive world-wide observing campaign which led to the detection of multi-wavelength electromagnetic counterparts. Multi-messenger discoveries are revealing the enigmas of the most energetic transients in the sky, probing neutron-stars physics, relativistic astrophysics, nuclear physics, nucleosynthesis, and cosmology. The talk will give an overview of the astrophysical implications of the gravitational-wave and multi-messenger observations, the prospects and challenges of the current and future gravitational-wave detectors.

Modeling, which includes developing, testing, and refining models, is a central activity in physics. Modeling is most fully represented in the laboratory where measurements of real phenomena intersect with theoretical models, leading to refinement of models and experimental apparatus. However, experimental physicists use models in complex ways and the process is often not made explicit in physics laboratory courses. We have developed a framework to describe the modeling process in physics laboratory activities. The framework has guided our course transformations, research into student leaning, and our assessment of student outcomes. I will present the framework, how we use it to transform our lab courses, and a new scalable assessment used to measure students’ modeling ability.

The dynamics of quasi-particles in non-equilibrium states of matter reveal the underlying microscopic coupling between electronic, spin and vibrational degrees of freedom. We aim for a quantum-state-resolved picture of coupling on the level of quasi-particle self-energies, which goes beyond established ensemble-average descriptions, and which requires ultrafast momentum-resolving techniques. The dynamics of electrons and excitons is measured with four-dimensional time- and angle-resolved photoelectron spectroscopy (trARPES), featuring a high-repetition-rate XUV laser source [1] and momentum microscope detector [2]. I will exemplify this experimental approach by discussing electron and exciton dynamics in the semiconducting transition metal dichalcogenide WSe2 [3,4]. Our approach provides access to the transient distribution of hot carriers in the entire Brillouin zone of photo-excited semiconductors and allows the quantification of energy relaxation dynamics. I will sketch the capability of multidimensional photoemission spectroscopy of providing orbital information [5], of visualizing the change of the electronic structure during phase transitions [6,7], and of revealing interfacial energy transfer processes in nanoscale heterostructures. The complementary view of ultrafast phonon dynamics is obtained through femtosecond electron diffraction. The elastic and inelastic scattering signal reveals the temporal evolution of vibrational excitation of the lattice and momentum-resolved information of transient phonon populations [8].

[1] M. Puppin et al., Rev. Sci. Inst. 90, 23104 (2019). [2] J. Maklar et al., arXiv:2008.05829 (2020). [3] R. Bertoni et al., Phys. Rev. Lett. 117, 277201 (2016). [4] D. Christiansen et al., Phys. Rev. B 100, 205401 (2019). [5] S. Beaulieu et al., Phys. Rev. Lett., accepted; arXiv:2006.01657 (2020). [6] C.W. Nicholson et al., Science 362, 821 (2018). [7] S. Beaulieu et al., arXiv:2003.04059 (2020). [8] L. Waldecker et al., Phys. Rev. Lett. 119, 036803 (2017).

Van der Waals Semiconductors such as transition metal dichalcogenides (TMDs) mark a new frontier for condense matter physics and the optoelectronics. The two-dimensionality of the monolayer TMDs and weak dielectric screening yield a significant enhancement of the Coulomb interaction. As a result, the optical properties of TMDs are widely dominated by excitons, Coulomb-bound electron–hole pairs. With high exciton binding energy, large exciton oscillator strength, and unprecedented integration flexibility with optical architectures, TMDs provide a new platform to study exciton polaritons, a new quasi-particle formed by strong coupling between an exciton and a photon. In this talk, I will begin with the excitons polaritons in TMDs monolayers coupled with a one-dimensional photonic crystal [1]. Then I will introduce two types of TMDs heterobilayers and talk about how the properties of excitons are controlled by heterostructures [2,3]. Lastly, these two types of heterobilayers are integrated with optical cavities, which give rise to exciton-photon interactions in weak and strong coupling regimes respectively [4].

References:
1. Zhang, L., Gogna, R., Burg, W., Tutuc, E. & Deng, H. Photonic-crystal exciton-polaritons in monolayer semiconductors. Nature Communications 9, 1–8 (2018). 2. Zhang, L. et al. Highly valley-polarized singlet and triplet interlayer excitons in van der Waals heterostructure. Phys. Rev. B 100, 041402 (2019). 3. Zhang, L. et al. Twist-angle dependence of moiré excitons in WS 2 /MoSe 2 heterobilayers. Nature Communications 11, 5888 (2020). 4. Paik, E. Y*. Zhang, L*. et al. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature 576, 80–84 (2019).

Super star clusters were an important ingredient of star formation in the early universe, where they played an crucial role also in self-regulating star formation through their feedback. They most likely were the progenitors of globular clusters. Therefore, it is important to understand how they came into being. In today's universe, they still are formed copiously in starburst galaxies, but are exceedingly rare in our own Galaxy. There is one candidate star-forming region in the Galactic center region, SgrB2, which has the potential to form one or even two super star clusters today. I will present multi-scale and multi-wavelength studies of this region which shed some light on the formation process.

Light has the remarkable capacity to reveal quantum features under ambient conditions, making exploration of the quantum world feasible in the laboratory and field. Further, the availability of high-quality integrated optical components makes it possible to conceive of large-scale quantum states by bringing together many different quantum light sources and manipulating them in a coherent manner and detecting them efficiently. By this route, we can envisage a scalable photonic quantum network that will facilitate the preparation of distributed quantum correlations among many light beams. This will enable a new regime of state complexity to be accessed - one for which it is impossible using classical computers to determine the structure and dynamics of the system. This is a new regime not only for scientific discovery, but also practical purpose: the same complexity of big quantum systems may be harnessed to perform tasks that are impossible using known future information processing technologies. For instance, ideal universal quantum computers may be exponentially more efficiently than classical machines for certain classes of problems, and communications may be completely secure. Photonic quantum machines will open new frontiers in quantum science and technology.

Biography: Professor Ian Walmsley FRS is the second Provost of Imperial College London since September 2018 and is also Chair in Experimental Physics at the College. Before joining Imperial, Professor Walmsley served as Pro-Vice-Chancellor (Research and Innovation) and Hooke Professor of Experimental Physics at the University of Oxford. Professor Walmsley graduated from Imperial with first class honours in physics in 1980, and completed his PhD at the University of Rochester before working as a postdoc at Cornell University. He became Assistant Professor of Optics at the University of Rochester in 1988, and held a number of roles there before joining the University of Oxford in 2001 as Professor of Experimental Physics. He was also a Senior Visiting Fellow at Princeton University. He was appointed Pro-Vice-Chancellor (Research) of the University of Oxford in 2009, becoming Pro-Vice-Chancellor (Research and Innovation) in 2015. At Oxford, he led the Networked Quantum Information Technologies Hub and headed up the creation of the Rosalind Franklin Institute. He was a member of the EPSRC Physics Strategic Advisory Team and was on the Max Planck Institute for Quantum Optics’ Science Advisory Board.In recognition of his contributions to quantum optics and ultrafast optics, Professor Walmsley was elected a Fellow of the Royal Society in 2012. He is also a Fellow of the Institute of Physics, the American Physical Society and the Optical Society of America.

TBA

TBA

TBA

Seminarau 2019

Bydd y seminar hwn yn canolbwyntio ar dair llinell amsugnol o ymchwil i nanoffotoneg, gan gynrychioli tair amserlen olynol o’r ffiseg berthnasol. Bydd yn dechrau â’r arsylwad arbrofol cyntaf o effaith giroptegol a ragfynegwyd 40 mlynedd yn ôl [1,2]. Nesaf, bydd yn ystyried yr ôl-jetiau lleiaf (‘nanojetiau’) a grëwyd erioed, ac yn trafod sut gellir eu defnyddio i gydosod metamaterialau newydd [3,4].

I’w gadarnhau.

I’w gadarnhau.

I’w gadarnhau.

I’w gadarnhau.

I’w gadarnhau.

Seminarau 2018