Dr Richard Lewis
Postdoctoral Research Associate (with Prof Graham Hutchings)
Cyhoeddiadau
2022
- Santos, A., Lewis, R. J., Morgan, D. J., Davies, T. E., Hampton, E., Gaskin, P. and Hutchings, G. J. 2022. The oxidative degradation of phenol via in situ H2O2 synthesis using Pd supported Fe-modified ZSM-5 catalysts. Catalysis Science & Technology 12(9), pp. 2943-2953. (10.1039/D2CY00283C)
- Fortunato, G. V. et al. 2022. Analysing the relationship between the fields of thermo- and electrocatalysis taking hydrogen peroxide as a case study. Nature Communications 13, article number: 1973. (10.1038/s41467-022-29536-6)
- Paris, C. B., Howe, A. G., Lewis, R. J., Hewes, D., Morgan, D. J., He, Q. and Edwards, J. K. 2022. Impact of the experimental parameters on catalytic activity when preparing polymer protected bimetallic nanoparticle catalysts on activated carbon. ACS Catalysis 12, pp. 4440–4454. (10.1021/acscatal.1c05904)
- Huang, X. et al. 2022. Au-Pd separation enhances bimetallic catalysis of alcohol oxidation. Nature 603, pp. 271-275. (10.1038/s41586-022-04397-7)
- Richards, T., Lewis, R. J., Morgan, D. J. and Hutchings, G. J. 2022. The direct synthesis of Hydrogen Peroxide over supported Pd-based catalysts: an investigation into the role of the support and secondary metal modifiers. Catalysis Letters (10.1007/s10562-022-03967-8)
- Barnes, A., Lewis, R. J., Morgan, D. J., Davies, T. E. and Hutchings, G. J. 2022. Enhancing catalytic performance of AuPd catalysts towards the direct synthesis of H2O2 through incorporation of base metals. Catalysis Science & Technology 12, pp. 1986-1995. (10.1039/D1CY01962G)
- Brehm, J., Lewis, R. J., Morgan, D. J., Davies, T. E. and Hutchings, G. J. 2022. The direct synthesis of hydrogen peroxide over AuPd nanoparticles: an investigation into metal loading. Catalysis Letters 152, pp. 254-262. (10.1007/s10562-021-03632-6)
- Qi, G. et al. 2022. Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2. Nature Catalysis 5, pp. 45–54. (10.1038/s41929-021-00725-8)
2021
- Lewis, R. J., Ntainjua, E. N., Morgan, D. J., Davies, T. E., Carley, A. F., Freakley, S. J. and Hutchings, G. J. 2021. Improving the performance of Pd based catalysts for the direct synthesis of hydrogen peroxide via acid incorporation during catalyst synthesis. Catalysis Communications 161, article number: 106358. (10.1016/j.catcom.2021.106358)
- Sun, S. et al. 2021. Lanthanum modified Fe-ZSM-5 zeolites for selective methane oxidation with H2O2. Catalysis Science & Technology 11(24), pp. 8052-8064. (10.1039/D1CY01643A)
- Santos, A., Lewis, R. J., Morgan, D. J., Davies, T. E., Hampton, E., Gaskin, P. and Hutchings, G. J. 2021. The degradation of phenol via in situ H2O2 production over supported Pd-based catalysts. Catalysis Science & Technology 11(24), pp. 7866-7874. (10.1039/D1CY01897C)
- Richards, T. et al. 2021. A new clean approach to water disinfection using catalytic in situ generation of reactive oxygen species. Nature Catalysis 4, pp. 575-585. (10.1038/s41929-021-00642-w)
- Wilbers, D. et al. 2021. Controlling product selectivity with nanoparticle composition in tandem chemo-biocatalytic styrene oxidation. Green Chemistry 23(11), pp. 4170-4180. (10.1039/D0GC04320F)
- Crombie, C. M. et al. 2021. Enhanced selective oxidation of benzyl alcohol via in situ H2O2 production over supported Pd-based catalysts. ACS Catalysis 11, pp. 2701–2714. (10.1021/acscatal.0c04586)
- Crombie, C. M. et al. 2021. The influence of reaction conditions on the oxidation of cyclohexane via the in-situ production of H2O2. Catalysis Letters 151, pp. 164-171. (10.1007/s10562-020-03281-1)
- Underhill, R. et al. 2021. Ambient base-free glycerol oxidation over bimetallic PdFe/SiO2 by in situ generated active oxygen species. Research on Chemical Intermediates 47, pp. 303-324. (10.1007/s11164-020-04333-2)
- Crombie, C. M. et al. 2021. The selective oxidation of cyclohexane via In-situ H2O2 production over supported Pd-based catalysts. Catalysis Letters 151, pp. 2762-2774. (10.1007/s10562-020-03511-6)
2020
- Akram, A. et al. 2020. The direct synthesis of hydrogen peroxide using a combination of a hydrophobic solvent and water. Catalysis Science and Technology 10(24), pp. 8203-8212. (10.1039/D0CY01163K)
- Freakley, S. J. et al. 2020. Gold–palladium colloids as catalysts for hydrogen peroxide synthesis, degradation and methane oxidation: effect of the PVP stabiliser. Catalysis Science and Technology 10(17), pp. 5935-5944. (10.1039/D0CY00915F)
- Crole, D. A., Underhill, R., Edwards, J. K., Shaw, G., Freakley, S. J., Hutchings, G. J. and Lewis, R. J. 2020. The direct synthesis of hydrogen peroxide from H2 and O2 using Pd-Ni/TiO2 catalysts. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences 378(2176), article number: 20200062. (10.1098/rsta.2020.0062)
- Gong, X. et al. 2020. Enhanced catalyst selectivity in the direct synthesis of H2O2 through Pt incorporation into TiO2 supported AuPd catalysts. Catalysis Science and Technology 10(14), pp. 4635-4644. (10.1039/D0CY01079K)
- Wang, S., Lewis, R. J., Doronkin, D. E., Morgan, D. J., Grunwaldt, J., Hutchings, G. J. and Behrens, S. 2020. The direct synthesis of hydrogen peroxide from H2 and O2 using Pd–Ga and Pd–In catalysts. Catalysis Science and Technology 10, pp. 1925-1932. (10.1039/C9CY02210D)
2019
- Lewis, R. J., Bara Estaun, A., Agarwal, N., Freakley, S. J., Morgan, D. J. and Hutchings, G. J. 2019. The direct synthesis of H2O2 and selective oxidation of methane to methanol using HZSM-5 supported AuPd catalysts. Catalysis Letters 149(11), pp. 3066-3075. (10.1007/s10562-019-02876-7)
- Freakley, S. J. et al. 2019. A chemo-enzymatic oxidation cascade to activate C-H bonds with in situ generated H2O2. Nature Communications 10(1), article number: 4178. (10.1038/s41467-019-12120-w)
- Santos Hernandez, A. et al. 2019. The direct synthesis of hydrogen peroxide over Au-Pd supported nanoparticles under ambient conditions. Industrial & Engineering Chemistry Research 58(28), pp. 12623-12631. (10.1021/acs.iecr.9b02211)
- Lewis, R. et al. 2019. The direct synthesis of H2O2 using TS-1 supported catalysts. ChemCatChem 11(6), pp. 1673-1680. (10.1002/cctc.201900100)
- Alotaibi, F., Al-Mayman, S., Alotaibi, M., Edwards, J. K., Lewis, R. J., Alotaibi, R. and Hutchings, G. J. 2019. Direct synthesis of hydrogen peroxide using Cs-containing heteropolyacid-supported palladium-copper catalysts. Catalysis Letters 149(4), pp. 998-1006. (10.1007/s10562-019-02680-3)
- Hutchings, G. J. and Lewis, R. 2019. A review of recent advances in the direct synthesis of H2O2. ChemCatChem 11(1), pp. 298-308. (10.1002/cctc.201801435)
2018
- Underhill, R. et al. 2018. Oxidative degradation of phenol using in situ generated hydrogen peroxide combined with Fenton's process. Johnson Matthey Technology Review 62(4), pp. 417-425. (10.1595/205651318X15302623075041)
2017
- Lewis, R., Edwards, J., Freakley, S. and Hutchings, G. 2017. Solid acid additives as recoverable promoters for the direct synthesis of hydrogen peroxide. Industrial & Engineering Chemistry Research 56(45), pp. 13287-13293. (10.1021/acs.iecr.7b01800)
2016
- Lewis, R. J. 2016. The application of Cs-exchanged tungstophosphoric acid as an additive in the direct synthesis of hydrogen peroxide and the use of Au-Pd/TS-1 in a one-pot approach to cyclohexanone oxime production. PhD Thesis, Cardiff University.
2015
- Freakley, S. J., Lewis, R. J., Morgan, D. J., Edwards, J. K. and Hutchings, G. J. 2015. Direct synthesis of hydrogen peroxide using Au-Pd supported and ion-exchanged heteropolyacids precipitated with various metal ions. Catalysis Today 248, pp. 10-17. (10.1016/j.cattod.2014.01.012)
- Edwards, J. K., Freakley, S. J., Lewis, R. J., Pritchard, J. C. and Hutchings, G. J. 2015. Advances in the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Catalysis Today 248, pp. 3-9. (10.1016/j.cattod.2014.03.011)