All seminars will commence at 12:10pm in room M/0.34, The Mathematics Building, Cardiff University, Senghennydd Road (unless otherwise stated).

Please contact Dr Timm Oertel for more details regarding Operational Research/WIMCS lectures and Dr Andrey Pepelyshev for more details regarding Statistics lectures.

Seminars

Date	Speaker	Seminar
10 July 2017	Dr Kirstin Strokorb (Cardiff School of Mathematics)	Stability and Dependence in Extreme Value Theory Extreme value theory is a branch of probability and statistics that aims to provides theoretically sound procedures for extrapolation beyond the range of available data (and also to understand the limits of such procedures). In the first part of this talk I will explain:
		(i) why stability properties such as max-stability or threshold-stability are naturally considered as modelling assumptions to justify two non-parametric approaches to such problems (ii) address some of the difficulties for understanding dependence between extreme observations

Date	Speaker	Seminar	
		In the second part I will present joint work with Ilya Molchanov, where we identify some connections between Extreme value theory, Random sets and Properties of risk measures enabling us to recover and extend several results from the literature from a unifying perspective.	
5 July 2017	Dr Tom Beach(Cardiff School of Engineering)	To be announced.	
14 June 2017	Dmitrii Silvestrov (Stockholm)	Asymptotic Expansions for Stationary and Quasi- Stationary Distributions of Nonlinearly Perturbed Markov Chains and semi- Markov Processes New algorithms for computing asymptotic expansions for stationary and quasi-stationary distributions of nonlinearly perturbed Markov chains and semi- Markov processes are presented. The algorithms are based on special techniques of sequential phase space reduction and some kind of "operational calculus" for	

Speaker

Laurent asymptotic expansions applied to moments of hitting times for perturbed semi-Markov processes. These algorithms have a universal character. They can be applied to nonlinearly perturbed semi-Markov processes with an arbitrary asymptotic communicative structure of the phase space. Asymptotic expansions are given in two forms, without and with explicit bounds for remainders. The algorithms are computationally effective, due to a recurrent character of the corresponding computational procedures. The related references are [1-2].

References

[1] Gyllenberg, M., Silvestrov,
D.S. (2008). Quasi-Stationary
Phenomena in Nonlinearly
Perturbed Stochastic Systems.
De Gruyter Expositions in
Mathematics, 44, Walter de
Gruyter, Berlin, ix+579 pp.

[2] Silvestrov, D., Silvestrov, S.(2016). Asymptoticexpansions for stationary

Date	Speaker	Seminar
		distributions of perturbed semi-Markov processes. In: Silvestrov, S., Rancic, M. (Eds). Engineering Mathematics II. Algebraic, Stochastic and Analysis Structures for Networks, Data Classification and Optimization, Chapter 10. Springer Proceedings in Mathematics & Statistics 179, Springer, Cham, 151 222.
12 June 2017	Nikita Zvonarev (St. Petersburg State University)	Fisher Scoring in Low-Rank Signal Estimation The problem of signal estimation is considered. We suggest an algorithm of construction of MLE/LS signal estimation. The algorithm is based on low-rank approximation and suggests a stable solution of the corresponding optimization problem.
31 May 2017	Prof. Anatoly Zhigljavsky(Cardiff University)	Simplicial variances, distances and correlations with a view towards big data I will describe a brand-new approach for defining variances, distances and correlations for high-

Date	Speaker	Seminar
		dimensional data and argue that the new concepts may have serious advantages over the classical ones, especially if points of a multivariate sample lie close to a linear subspace.
10 May 2017	Martin Kunc (Warwick)	To be announced.
19 April 2017	Martin Lotz (University of Manchester)	Randomized dimension reduction in optimization and topological data analysis This talk reviews some recent and current work on extracting information from random projections of data. We first discuss a phase transition phenomenon in convex optimization: the probability that convex regularization succeeds in recovering a signal from few random measurements jumps sharply from zero to one as the number of measurements exceeds a certain threshold. After explaining the geometric and probabilistic ideas behind this phenomenon, we show how they can also be applied to problems in other fields

Date	Speaker	Seminar
		such as topological data analysis.
22 March 2017	James Woodcock (Cambridge)	Modelling active transport and health: state of the science and future directions The last decade have seen a growth of studies modelling how a shift to active transport can affect population health. Results have generally shown the potential for substantial benefits but uncertainties remain around impacts for different subgroups and on the generalisability of the results to lower and middle income settings. Correspondingly as the science matures there is a move to more rigorous methods and use of new data. In this talk I will consider how research is addressing these issues with a focus on how we model population physical activity exposures and risks, and how we estimate changes in injury risk with changes in active travel volume.

Past seminars

Date	Speaker	Seminar
15 February 2017	Alexander Stewart (UCL)	Evolution and the dynamics of social behavior
		Abstract: Understanding the dynamics of social behavior is very much a puzzle for our time. On the one hand, this puzzle is critical to understanding how human behavior is changing as we update and expand our social networks in unprecedented ways.
		On the other hand, these complex dynamics can (perhaps) be understood, due to recent expansion in

Date	Speaker	Seminar
		empirical data and computational power. An evolutionary perspective is vital to this effort, providing a framework for understanding how and when behavioral change will spread through a population.
		However, in order to provide this perspective we must develop mechanistic models of behavioral changes at the individual level that explain the emergence of social phenomena, such as social norms or

collective identities, at the level of groups and populations. I will discuss ongoing attempts to model some of the complex social behaviors found in humans such as cooperation, using evolutionary game theory, and some insights this approach yields about the emergence and stability of social norms. I will then briefly discuss how these game theoretic models can be connected to experiments to	Date	Speaker	Seminar
identities, at the level of groups and populations. I will discuss ongoing attempts to model some of the complex social behaviors found in humans such as cooperation, using evolutionary game theory, and some insights this approach yields about the emergence and stability of social norms. I will then briefly discuss how these game theoretic models can be connected to experiments to			
the level of groups and populations. I will discuss ongoing attempts to model some of the complex social behaviors found in humans such as cooperation, using evolutionary game theory, and some insights this approach yields about the emergence and stability of social norms. I will then briefly discuss how these game theoretic models can be connected to experiments to			collective
groups and populations. I will discuss ongoing attempts to model some of the complex social behaviors found in humans such as cooperation, using evolutionary game theory, and some insights this approach yields about the emergence and stability of social norms. I will then briefly discuss how these game theoretic models can be connected to experiments to			identities, at
populations. I will discuss ongoing attempts to model some of the complex social behaviors found in humans such as cooperation, using evolutionary game theory, and some insights this approach yields about the emergence and stability of social norms. I will then briefly discuss how these game theoretic models can be connected to experiments to			the level of
will discuss ongoing attempts to model some of the complex social behaviors found in humans such as cooperation, using evolutionary game theory, and some insights this approach yields about the emergence and stability of social norms.			groups and
ongoing attempts to model some of the complex social behaviors found in humans such as cooperation, using evolutionary game theory, and some insights this approach yields about the emergence and stability of social norms. I will then briefly discuss how these game theoretic models can be connected to experiments to			populations. I
attempts to model some of the complex social behaviors found in humans such as cooperation, using evolutionary game theory, and some insights this approach yields about the emergence and stability of social norms.			will discuss
model some of the complex social behaviors found in humans such as cooperation, using evolutionary game theory, and some insights this approach yields about the emergence and stability of social norms.			ongoing
the complex social behaviors found in humans such as cooperation, using evolutionary game theory, and some insights this approach yields about the emergence and stability of social norms.			attempts to
social behaviors found in humans such as cooperation, using evolutionary game theory, and some insights this approach yields about the emergence and stability of social norms.			model some of
behaviors found in humans such as cooperation, using evolutionary game theory, and some insights this approach yields about the emergence and stability of social norms.			the complex
found in humans such as cooperation, using evolutionary game theory, and some insights this approach yields about the emergence and stability of social norms.			social
humans such as cooperation, using evolutionary game theory, and some insights this approach yields about the emergence and stability of social norms.			behaviors
as cooperation, using evolutionary game theory, and some insights this approach yields about the emergence and stability of social norms.			found in
cooperation, using evolutionary game theory, and some insights this approach yields about the emergence and stability of social norms.			humans such
using evolutionary game theory, and some insights this approach yields about the emergence and stability of social norms.			as
evolutionary game theory, and some insights this approach yields about the emergence and stability of social norms.			cooperation,
game theory, and some insights this approach yields about the emergence and stability of social norms.			using
and some insights this approach yields about the emergence and stability of social norms.			evolutionary
insights this approach yields about the emergence and stability of social norms.			game theory,
approach yields about the emergence and stability of social norms.			and some
yields about the emergence and stability of social norms.			insights this
the emergence and stability of social norms.			approach
and stability of social norms. I will then briefly discuss how these game theoretic models can be connected to experiments to			yields about
social norms. I will then briefly discuss how these game theoretic models can be connected to experiments to			the emergence
I will then briefly discuss how these game theoretic models can be connected to experiments to			and stability of
briefly discuss how these game theoretic models can be connected to experiments to			social norms.
how these game theoretic models can be connected to experiments to			I will then
how these game theoretic models can be connected to experiments to			briefly discuss
models can be connected to experiments to			-
models can be connected to experiments to			game theoretic
experiments to			
			connected to
			experiments to
test qualitative			test qualitative

Date	Speaker	Seminar
		predictions about human social behaviour.
30 November 2016	Ivan Papić (Osijek University)	Heavy-tailed fractional Pearson diffusions
		Heavy-tailed fractional Pearson diffusions are a class of sub- diffusions with marginal heavy-tailed Pearson distributions: reciprocal gamma, Fisher- Snedecor and Student distributions. They are governed by the time- fractional diffusion equations with polynomial coefficients depending on

Date	Speaker	Seminar
		the
		parameters of
		the
		corresponding
		Pearson
		distribution.
		We present
		the spectral
		representation
		of transition
		densities of
		fractional
		Fisher-
		Snedecor and
		reciprocal -
		gamma
		diffusions,
		which depend
		heavily on the
		structure of
		the spectrum
		of the
		infinitesimal
		generator of
		the
		corresponding
		non-fractional
		Pearson
		diffusion. Also,
		we present the
		strong
		solutions of
		the Cauchy
		-
		problems
		associated

Date	Speaker	Seminar
		with heavy- tailed fractional Pearson diffusions and the correlation structure of these diffusions.
		This is a joint work with N. Leonenko (Cardiff University, UK), N.Suvak (University of Osijek, Croatia) and Alla Sikorskii (Michigan State University and Arizona University, USA).
16 November 2016	Joerg Kalcsics (University of Edinburgh)	Structural Properties of Voronoi Diagrams in Facility Location Problems with

Date	Speaker	Seminar
		Continuous
		Demand
		Authors: Igor
		Averbakh,
		Oded Berman,
		Jörg Kalcsics,
		Dmitry Krass
		In most facility
		location
		models
		customer
		demand is
		assumed to be
		discrete and
		aggregated to
		a relatively
		small number
		of points.
		However, in
		many urban
		applications
		the number of
		potential
		customers can
		be in the
		millions and
		representing
		every
		customer
		residence as a
		separate
		demand point
		is usually

Date	Speaker	Seminar
		infeasible. Thus, it may be more accurate to represent customer demand as spatially distributed over some region.
		We consider the conditional market share problem where locations of n facilities are fixed and we seek to find the optimal location for the (n+1)st facility with the objective of maximizing its market
		share. We assume that demand is uniformly distributed over a convex polygon, facilities can

Date	Speaker	Seminar
		be located
		anywhere in
		the polygon,
		and customers
		obtain service
		from the
		closest open
		facility under
		rectilinear
		distances.
		Once the
		locations of al
		facilities are
		specified, the
		market area o
		a facility is
		given by its
		Voronoi cell in
		the Voronoi
		diagram
		generated by
		the facilities.
		The main
		difficulty whe
		optimizing the
		location of the
		new facility is
		that it is
		generally
		impossible to
		represent the
		objective function in
		closed form; in
		fact, the

Date	Speaker	Seminar
		representation
		depends on
		the structure
		of the Voronoi
		diagram, i.e.,
		the position
		and the
		geometry of
		the cell
		boundaries.
		Unfortunately
		this structure
		can change
		drastically
		with the
		location of the
		new facility.
		In this talk we
		derive
		structural
		properties of
		Voronoi
		diagrams for
		the rectilinear
		distances and
		show how to
		use them to
		identify
		regions where
		the resulting
		Voronoi
		diagram is
		"structurally
		identical" for

Date	Speaker	Seminar
		every point in
		a region. Giver
		such regions,
		we can derive
		a parametric
		representation
		of the
		objective
		function which
		is valid for any
		location in the
		region. This, ir
		turn, allows us
		to optimize th
		location of the
		new facility
		over this
		region using
		classical non-
		linear
		programming
		techniques.
		While the
		optimization
		techniques are
		specific to the
		particular
		-
		model being
		considered,
		the structural
		results we
		derive, as well
		as our general
		approach, are
		quite

Date	Speaker	Seminar
		universal, and can be applied to many other location models as well.
2 November 2016	Laszlo Vegh (LSE)	Rescaled coordinate descent methods for Linear Programming
		Simple coordinate descent methods such as von Neumann's algorithm or Perceptron, both developed in the 50s, can be used to solve linear programming feasibility
		problems. Their convergence rate depends on the condition measure of the

Date	Speaker	Seminar
		problem at hand, and is typically not polynomial.
		Recent work of Chubanov (2012, 2014), related to
		prior work of Betke (2004), has gathered
		renewed interest in the application of these methods
		in order to obtain polynomial time
		algorithms for linear programming.
		We present two algorithms that fit into
		this line of research. Both our algorithms
		alternate between coordinate descent steps
		and rescaling steps, so that

Date	Speaker	Seminar
		either the
		descent step
		leads to a
		substantial
		improvement
		in terms of the
		convergence,
		or we can infe
		that the
		problem is ill
		conditioned
		and rescale in
		order to
		improve the
		condition
		measure. In
		particular,
		both
		algorithms are
		based on the
		analysis of a
		geometrical
		invariant of
		the LP
		problem, used
		as a proxy for
		the condition
		measure, that
		appears to be
		novel in the
		literature.
		This is joint
		work with
		Daniel Dadush

Date	Speaker	Seminar
		(CWI) and Giacomo Zambelli (LSE).
19 October 2016	Oleg Klesov (National University of Ukraine)	Generalized renewal processes and Pseudo- regularly varying functions. Read the full abstract.