Drāviḍa Temples in the
Samarāṅgaṇasūtradhāra

ADAM HARDY

The relationship to actual practice of the vastuśāstras (or vāstuśāstras) and śilpaśāstras, the canonical Indian texts on architecture and sculpture, is a complex one. Scholarly attitudes to these texts range between an uncritical assumption that, traditionally, these texts set the rules for making buildings and sculptures, thereby holding the key to understanding them, and complete denial of their utility, on the basis that they were probably composed by Brahmans who were cut off from practical experience. The truth must lie somewhere in between. To establish the extent to which any particular text may have been useful for creating architecture, it must be shown whether it can be used for this purpose – if not by actually building, at least by drawing. This, surely, should be a prerequisite for any sensible discussion of the nature of these texts.

Surprisingly, the one sustained attempt to illustrate a vastuśāstra is that of Ram Raz, whose 1834 essay is the first work of modern scholarship on Hindu temples. On the basis of a fragment of the south Indian Mānasāra, Ram Raz was assisted by a contemporary practitioner in interpreting its prescriptions through lucid drawings, done in a florid latter-day Drāviḍa style (Figure 1). Successors to this enterprise are extremely rare.

This article is an attempt to interpret one vastu text through drawing, and in so doing to reach some conclusions about its usability. It is a first fruit of a collaborative study of the Samarāṅgaṇasūtradhāra by Mattia Salvini and me. Salvini has transliterated the chapters on temple architecture and translated them from the Sanskrit, and we have begun to refine the translation through discussion. Our eventual aim is to produce a critical, annotated, and illustrated translation of these chapters.

A large proportion of the text consists of technical terms, which must always have rendered it meaningless to anyone unable to visualise what is being conveyed. Access to this vocabulary would be impossible if scholarship in the past two centuries had not unearthed much of its meaning, especially in the last fifty years, and particularly through the work of M.A. Dhaky encapsulated in the Encyclopaedia of Indian Temple Architecture (EITA) produced by the American Institute of Indian Studies. While it is widely understood that regional traditions employed different terminologies, a relatively standardised vocabulary has become accessible to students of Indian temple architecture. This provides indispensable points of reference from which
to solve the puzzles posed by the Samarāṅgaṇa. But between these footholds, the text wanders widely from the modern academic norms. Moreover, the term for a given element may vary not only from chapter to chapter, but almost from verse to verse, often giving the impression that elegant linguistic variation is more important than precision, that from time to the reader is treated to riddles, and above all that meanings are conveyed as much by the contexts of words as by the actual words used. It is only by grasping the relationships between the architectural elements denoted that a coherent picture of the intended temple can be imagined, and this involves knowing and keeping in mind the possible temple styles and compositions, and recognising when the words fit a particular pattern.

Once the parts and their organisation are identified, the main challenge is to understand the measurements and proportions prescribed. Measurements, when given, are generally in hastas (cubits) and aṅgulas (digits or inches). On the whole the text is concerned with relative measure, not absolute measure, and the units concerned are bhāgas, padas, and aṁśas. Everything becomes simpler when it is realised that most of the time these terms are interchangeable, and are varied just to avoid verbal monotony. A given width or height is divided into so many bhāgas or padas, and a number or fraction of these is then ascribed to its various sections. Bhāga, pada, and aṁśa, therefore generally signify a part or a module. ‘Srāra’ implies a layer, and this too, where vertical divisions are concerned, is often used synonymously with the other terms.5

The Drāviḍa chapters and their source

The Samarāṅgaṇa traces its authority to the divine architect Viśvakarman, while proclaiming at the end of every chapter that its author is the King of Great Kings, Supreme Lord, Glorious Bhojadeva. This is taken to be the famous Paramāra king Bhoja of Dhar, who ruled c. AD 1010-55, and this period indeed accords with the kinds of temple architecture that are covered. Several chapters (55-57) deal with Nāgara temples, comprising both the basic Latina mode and the now established composite, multi-spired Śekhari or Anekāṇḍaka; although these useful terms, gaining acceptance in modern scholarship, are not used. These Nāgara chapters, which clearly refer to architecture from the broad stylistic zone of central and western India, cover similar ground, each with its own nomenclature for temple types, so that a name such as ‘Kailāsa’, for example, is assigned to different temple forms in different chapters. One chapter (65) is concerned with Bhumija temples, another composite mode, which appears in the eleventh century in the Paramāra realm of Malwa and in surrounding regions. On formal grounds Bhumija temples can be categorised as a variety of Nāgara, though the Samarāṅgaṇa treats them as separate. Chapters 61 and 62, devoted to the Drāviḍa temples of south India, are the focus of this article. The two chapters clearly belong together as a coherent section that has been rather artificially split. Although this is not the place to argue the point in detail, the Samarāṅgasūtradhāra gives the overwhelming impression that, even if it was for Bhoja that it was compiled, it is a patchwork of architectural texts deriving from different traditions.

The question therefore arises as to the provenance of the Drāviḍa chapters, and what conception of Drāviḍa they have in mind. An obvious surmise would be that they see the Drāviḍa through the eyes of architects from eleventh-century Malwa. The Bhumija chapter of the Samarāṅgaṇa shows an explicit awareness of the Drāviḍa which is entirely borne out by actual Bhumija temples. The text mentions the drāvīdakarma kūṭa (Figure 2), a version of the Drāviḍa domed pavilion (kūṭa). The numerous spirelets in a Bhumija superstructure (Figure 3), at first sight resembling miniature Latina towers, in fact are often composed of these drāvīdakarma aedicules, with their curvaceous leafy necklaces that are mutations of the makara monsters of the southern floor-with-joist-ends moulding (prati, vyālamāla).
3. Small śikharas in the tower of a Bhūmija temple, composed of miniature drāvidakarma kūṭas, the Drāvida domed pavilion as conceived by the masons of Malwa under the Paramāras. Udayeśvara Temple, Udayapur (Madhya Pradesh), c. 1058-80 (photo by SPA Bhopal).

<table>
<thead>
<tr>
<th>Temple (no. of storeys)</th>
<th>Width prescribed in hasta (cubits)</th>
<th>Width x $\sqrt{2}$</th>
<th>Height prescribed in hasta (cubits)</th>
<th>Sum of ascending stages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5, 2” (5.08)</td>
<td>7.18</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>9.89</td>
<td>(10)</td>
<td>9½</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>15.556</td>
<td>15</td>
<td>14,4”+x</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>21.21</td>
<td>21¼</td>
<td>21¼</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td>29.69</td>
<td>29½</td>
<td>29½</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>42.42</td>
<td>41</td>
<td>41½</td>
</tr>
<tr>
<td>7</td>
<td>35</td>
<td>49.49</td>
<td>(49½)</td>
<td>41½</td>
</tr>
<tr>
<td>8</td>
<td>40</td>
<td>56.56</td>
<td>57-3 amšas</td>
<td>57</td>
</tr>
<tr>
<td>9</td>
<td>51</td>
<td>72.12</td>
<td>72</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>56</td>
<td>79.196</td>
<td>79½</td>
<td>79½</td>
</tr>
<tr>
<td>11</td>
<td>65</td>
<td>91.92</td>
<td>92</td>
<td>91½</td>
</tr>
<tr>
<td>12</td>
<td>67</td>
<td>94.75</td>
<td>95</td>
<td>95</td>
</tr>
</tbody>
</table>

Table 1: showing how the height of each type of temple is prescribed as the width $x \sqrt{2}$
<table>
<thead>
<tr>
<th></th>
<th>t1</th>
<th>t2</th>
<th>t3</th>
<th>t4</th>
<th>t5</th>
<th>t6</th>
<th>t7</th>
<th>t8</th>
<th>t9</th>
<th>t10</th>
<th>t11</th>
<th>t12</th>
<th>Σ=</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>§1½</td>
<td>rest:</td>
<td>3½</td>
<td>a2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>p1</td>
<td>j2½</td>
<td>a2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9½</td>
</tr>
<tr>
<td>3</td>
<td>p1</td>
<td>j3</td>
<td>a2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14,4”+x</td>
</tr>
<tr>
<td>4</td>
<td>p1½</td>
<td>j3</td>
<td>a2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21¼</td>
</tr>
<tr>
<td>5</td>
<td>p1½</td>
<td>j3</td>
<td>a2½</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29¼</td>
</tr>
<tr>
<td>6</td>
<td>p1½</td>
<td>j4</td>
<td>a2½</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41¼</td>
</tr>
<tr>
<td>7</td>
<td>p1½</td>
<td>j4</td>
<td>a3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41½</td>
</tr>
<tr>
<td>8</td>
<td>9½</td>
<td>8½</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>§4</td>
<td>g2</td>
<td>t3</td>
<td></td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>7¾</td>
<td>(7¼)</td>
<td>5¼</td>
<td>5¼</td>
<td>4½</td>
<td>§5</td>
<td>g2½</td>
<td>t3½</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>10½</td>
<td>10</td>
<td>8½</td>
<td>7½</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>§4½</td>
<td>g2¼</td>
<td>t3</td>
<td>79¼</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>12½</td>
<td>11</td>
<td>9½</td>
<td>8¼</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>g2½</td>
<td>t3½</td>
<td>91½</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
<td>11</td>
<td>10½</td>
<td>10</td>
<td>8½</td>
<td>7½</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>g2</td>
<td>t2½</td>
</tr>
</tbody>
</table>

Table 2: Left hand column indicates number of storeys (talas, bhūmīs) in the temple, top band indicates the storey concerned (t1 = first tala, and so on), right hand column indicates the sum of the storey heights; § = śikhara (dome, here termed ghanṭā), p = prastāra (entablature, here termed kāṭapratāra), v = vedī, j = jaṅghā (‘thigh’, wall, shaft), a = adhiṣṭhāna (base, here termed pīṭha).
At Bhojpur, site of the unfinished Drāvida mega-temple attributed to the same Bhoja as supposedly wrote the Samarakāṇa, two of the engraved line drawings on the surrounding rocks (which we have been documenting in parallel with the present textual study) depict a form of maṇḍapa found nowhere else (Figure 4, right). The roof is not the tiered Phāṁsanā kind familiar at Khajuraho, for example, and also present among the Bhojpur line drawings, nor the Saṁvāraṇa type with multiple bell-topped pavilions, which arrived in this region from western India during the eleventh century. Instead, this type of maṇḍapa roof is composed of a peculiar form of miniature Drāvida or drāvidakarma pavilion. That at least one hall of this variety had been started at Bhojpur, if not completed, is attested by the survival of small carved stone kūṭas of exactly the kind shown in the drawings (Figure 4, left).

<table>
<thead>
<tr>
<th>Level/storey (tala)</th>
<th>Prescribed height</th>
<th>Remaining height (RH) from bottom of level to top of temple</th>
<th>Width of level = RH/√2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5th tala</td>
<td>3.50</td>
<td>10.00</td>
<td>7.07</td>
</tr>
<tr>
<td>4th tala</td>
<td>4.00</td>
<td>14.00</td>
<td>9.89</td>
</tr>
<tr>
<td>3rd tala</td>
<td>4.25</td>
<td>18.25</td>
<td>12.90</td>
</tr>
<tr>
<td>2nd tala</td>
<td>4.50</td>
<td>22.75</td>
<td>16.08</td>
</tr>
<tr>
<td>1st tala</td>
<td>4.50</td>
<td>27.25</td>
<td>19.26</td>
</tr>
<tr>
<td>Base</td>
<td>2.50</td>
<td>29.75</td>
<td>21.03</td>
</tr>
</tbody>
</table>

Table 3: Calculation of widths of upper storeys (courtesy of Bruno Dagens)
Various aspects of the Samarāṇgaṇa’s version of the Drāviḍa corroborate the suggestion that the text is written from a more northern perspective. Plan forms and, seemingly, dome forms are all based on a square, with no mention of the rectangular, apsidal, circular, and elliptical variants usual in the far south. Compared with Tamil proportions, kūṭas are generally squat and the laśuna section of pilasters is too short to accommodate the elegant, vase-like shape that it follows, for example, in Coḷa temples. Even without detailed linguistic analysis, it is clear that several of its basic terms are northern: a shrine is a prāśāda rather than a vimāna, a storey a bhūmi rather than a tala, the shaft of a pilaster a jaṅghā not a pada, a moulded base a pīṭha not an adhiṣṭhāna, the dome of a kūṭa a ghanṭā (bell) not a śikhara.

Yet nothing in the domains where the Bhūmija held sway can compare with the range and complexity of the Drāviḍa architecture described in the text, at least until one reaches Karnataka and Andhra in the lower Deccan, where both the Drāviḍa and the Bhūmija were well known. So it would seem very plausible that the Drāviḍa of the Samarāṇgaṇa should be the later Karnāṭa Drāviḍa, geographically and stylistically much closer than the Tamil country to the Paramāra orbit. However, the eleventh century Karnāṭa Drāviḍa (commonly identified as ‘Vesara’) is unmistakable on account of its staggered plan forms and interpenetrating compositional elements (Figure 5), which find no reflection in the text.

Despite all the northward-pointing clues, the Samarāṇgaṇa prescribes a diversity of forms of moulded base found only in the Tamil tradition and its derivatives. Within the range of its plan forms, pride of place is given to unstaggered, five-projection plans, with the option of an internal ambulatory; in the eleventh century this points to the grand monuments of the later Coḷas (Figure 10). So, too, does the range of elevations from one to twelve conceptual storeys. Karnāṭa Drāviḍa temples are virtually never above four storeys; more than four is rare in Tamilnadu, though there are notable eleventh- to twelfth-century exceptions at Darasuram (five), Tribhuvanam (six), Gangaikondacolapuram (eight), and Tanjavur (forteen).6 The theoretical range from one to twelve is also that of the Mayamata, a south Indian vastusāstra datable to before the end of the tenth century.7 These aspects fix the origin of the Samarāṇgaṇasātradhāra’s Drāviḍa temples definitively...
Drāvida Temples in The Samarāṅgaṇa Śūtradhāra

in the far south, even if the text has undergone changes through its northward transmission.

Moulded bases

Chapter 61, entitled ‘The Defining Traits of the Five Pīṭhas’ (pīṭhapañcakalakṣaṇa), deals with pīṭhas or moulded bases before continuing on to temple plans. If we compare the names for pīṭhas in the Samarāṅgaṇa with those of the Mayamata and with those selected by the EITA (which does not name its source), we find names in common, but mostly denoting different types of base. All three follow a procedure typical of southern vastu texts, enumerating every little sub-moulding, which makes it more difficult to grasp the principal divisions or mouldings. The latter generally correspond to the courses of masonry. Figure 6 is included

7. The five pīṭhas of the Samarāṅgaṇa

a) Vedībandha

b) Pratikrama

c) Pādabandha

d) Śrībandha

e) Ksurabandha
to clarify these divisions, using terms acceptable to modern scholarship but only partly true to the Samarāṅgaṇa. On the same basis it also shows the sequence of smaller scale mouldings in the pilasters.

The five pīṭhas of the Samarāṅgaṇa are the Pāḍabandha (or Pāḍabandhana), Śrībandha, Vedībandha (or Vedībandhana), Pratikrama, and Kṣurabandha (or Kṣurakabandhana). The Pāḍabandha (Chapter 61, verses 5-13) is transcribed in Figure 7a. This is an extremely widespread type wherever Drāviḍa architecture is found, both in the far south and in the Deccan. It consists of foot moulding (jagatti), cushion moulding (kumuda, most commonly round or faceted), recess or miniature gallery (gala), and eave moulding with dormer windows (kapota) – equivalent to the basic Nāgara sequence of kumbha- khura, kalaśa, antarapaṭṭa, kapotālī. For this first type of base the text specifies, in āṅgula[s], the praveśa, the relative projection and setting back of the mouldings. Here it seems to be laying out the general principles for all the types.

What remains of the discussion of the Pratikrama (Chapter 61, verses 22-25) is a fragment, probably belonging to a description of the kind of base shown in Figure 7b (missing parts dotted). Incidentally, this corresponds to the type called Pāḍabandha in the Mayamata, followed in this one case by the EITA. This is like the Samarāṅgaṇa’s Pāḍabandha, but with a wide paṭṭikā (fillet) instead of the kapota. The passage in the Samarāṅgaṇa concerning the Vedībandha (Chapter 61, verses 19-22) is cut short by the insertion of the Pratikrama fragment, but is complete enough for Figure 7c to be inferred with confidence.

Descriptions of the remaining types, the Śrībandha and Kṣurabandha, are intact, but they contain a surprising anomaly: the mouldings are in the wrong order. The Śrībandha (Figure 7d) has the full complement of standard mouldings, the ones shown in Figure 6, including the floor moulding (prati) – the cluster dominated here by the makara, and the rail moulding (vedi). In the Kṣurabandha (Figure 7e), only the vedi is absent. The full sequence, as in Figure 6, and in that order, is not uncommon in the far south, and in the Deccan, from the eighth century onwards, becomes the norm for all but humble shrines. But never does one find, as one does here, the kapota above the prati and the vedi; the conceptual floor needs to be above the miniature roof of the base, while the railing runs around the edge of the floor platform. Only an inveterate text fetishist would argue that the Samarāṅgaṇa must be right and all the temples wrong. Clearly some verses have got out of order. Since the verse runs smoothly, the creases must have been ironed out by a sensitive scribe.⁸

8. Plans

Following the five pīṭhas, the text deals with the five kinds of plan (talacchanda, ‘plan rhythm’ or literally, ‘metre’): Padma, Mahāpadma, Vardhamāna, Svastika, Sarvatobhadra. The first two, which I have not yet worked out fully, seem to be an interpolation from a more northerly tradition: they are different in character and treatment from the others, involving the swinging of chords in their construction. We are given no simple square plan, which is needed for the one-storey temple described later: the Padma is square with three projections, the Mahāpadma apparently a star with eight points and sharp reentrant projections ‘like a pig’s face’ (Chapter 61, verse 43).
Then three slightly varying five-projection plans are given, as shown in Figure 8. A given number of bhāgas is specified for each, and then subdivided. Two observations are worth making here. Firstly, there is not a single, all-embracing grid, as is sometimes the case and often assumed to be universal. In these examples the sides are divided into fifteen or twenty-eight parts, subdivided for the projections and recesses (salilāntara, jalāntara, jalamārga), while the square is re-divided into four parts: one for the wall (bhitti), two for the sanctum (garbha). The second point to note concerns the names used for the different projections. Rather than karna, pratibhadra, and bhadra for corner, intermediate and central projections, here these are called respectively kūṭa, pañjara, and śālā, showing that they are conceived not just in terms of the plan, but as shrine-images or aedicules rising the full height of the first tier, crowned respectively by square, horseshoe-arched and barrel-roofed pavilions.
Finally, the principle of the sāndhāra plan is explained. This has an internal ambulatory, as opposed to nirandhāra which has none. Here the square is divided into twelve, with four parts for the sanctum, one for the inner wall, one for the passageway, and two for the outer wall. This procedure, presumably, is to be applied to the previously described envelopes, in order to make them sāndhāra.

Elevations

Chapter 62 is about the elevations (ūrdhvamāna, literally ‘upper measurement’) of temples of one to twelve storeys (bhūmīs). Its title ‘Drāviḍa temples’ (drāvidaprāśadalakṣāṇam) would be appropriate for Chapters 61 and 62 together, and there was doubtless no such break in the original text from which they derive. Verse 1 proclaims:

ūrdhvamānam atha brūmo
ghanṭāntapapāditāḥ (?)

pramāṇam kārṇamāna sarvēśām eva
dhārayet || 1 ||

1. I will now explain the vertical measurement, starting from what is at the foot, up to the very top of the ghanṭā (‘bell’).

One should ascertain the size of everything according to the measure of the corner (karna).

The second line is crucial. Karṇamāna, the measurement stated to be the key one, is the diagonal of the square of the plan, and it turns out that in each case this dimension,
i.e. the width \(\times \sqrt{2} \), determines the height of the shrine to the top of the crowning ghaṇṭā or dome. The arithmetical game of making everything add up to this figure seems to have been more important than making well proportioned temple towers.

The one-storey temple (Figure 9) corresponds to what has come to be known in academic parlance as an ekatāla-alpa-vimāna (Figure 10). Its width is prescribed as 5 hastas and 2 aṅgulas, its height as 7 hastas. Assuming 24 digits to the cubit, the width is 5.08 hastas, giving a diagonal of 7.18, close enough to 7. In Figure 9, I have chosen the Pādabandha base (Figure 7a) and divided the 2 cubits prescribed for the base proportionately. All the way up the edge of the shrine, every single element and its size is spelt out. If, simply from prior knowledge of the tradition, one adds horseshoe arches (nāsīs) and intermediate pilasters in the wall, the result is a passable alpa-vimāna. It is, however, crowned by a very squat kūṭa, has an unrealistically monotonous number of parts measuring one bhāga. There is also one strange extra component, the ardhabharana or bharanārdha, among the pilaster mouldings.

For each type beyond the one-storey temple, the procedure is first to give the overall width and height, and then to list the height of each storey, culminating in the neck (kaṇṭha), dome (ghaṇṭā), and the sequence of parts constituting the finial. For the shrines up to the one with seven storeys, separate heights are given for the wall and ‘entablature’ (kūṭaprastāra) of each tier; the seven-storey temple, oddly, has a ‘vedi’ at the base of each storey, assigned a height separately.

From the eight-storey temple onwards, each tier is assigned a single dimension, without breaking it down. These various dimensions are ostensibly in hasta (cubits), but the term bhāga (part) is often used synonymously here. Table 1 shows the dimensions for the successive stages, and their sum, for each of the twelve temple types. Table 2 shows how the total height deduced in this way is always equal, at least approximately, to the height of the temple prescribed at the outset, and that this, in turn, is equal or nearly equal to the length of the diagonal of the plan (karnamāna). In the pursuit of this arithmetical goal, the incremental reductions in height seem rather arbitrary, and certainly do not follow regular arithmetical or geometrical progressions. The seven- and nine-storey shrines are anomalous, because the seven-storey shrine as described here has in fact only six storeys, and the description of the first two bhūmis of the nine-storey shrine is missing from the text. Up as far as the five-storey temple, once the general dimensions have been given, the text starts again at the bottom and goes all the way up through every small division, as we have already seen for the one-storey shrine.

The five-storey temple (paṇcabhāmika prāśāda) may be taken here as an illustration, and as a further demonstration of the extent to which the text can be useful as a guide to design. The relevant passage is appended to this article. This is the only temple in the series for which the plan type (the Sarvatobhadra) and the type of base (the Śrībandhapīṭha) are actually specified. For all the others these appear to be open to choice, although the range does not provide a suitable plan for every elevation. In order to give the five-storey temple a Sarvatobhadra plan (Figure 7b), its width of twenty-one hastas must be re-divided into twenty-eight parts. The prescribed height is 29¾ hastas, and the stages up to the top of the dome add up to 29¼. The remaining half may be intended for the finial, but it would only allow for a stunted one. Sarvatobhadra, incidentally, as well as having the technical sense of a plan with pronounced cardinal projections (and often with four entrances), means ‘beautiful on all sides’, and the text contains one small and welcome flight into poetry that takes off from this idea (Chapter 62, verses 123-126).
The architectural composition across the elevation is not explained, except inasmuch as it is implied for the first storey by the plan. For the other two five-projection plan types, the pattern of aedicules in the first tier is clearly the classic \(\text{kūṭa/pañjara/śālā/pañjara/kūṭa} \), whereas for the Sarvatobhadra plan the corner and intermediate projections are equal, and the terms ‘\(\text{kūṭa} \)’ and ‘\(\text{rathikā} \)’ are used synonymously. The intended pattern seems therefore to be \(\text{kūṭa/kūṭa/śālā/kūṭa/kūṭa} \). One can assume that the five projections would be carried up the tower, potentially with minor variations in the types of aedicule, as at the Airāvateśvara temple, Darasuram, illustrated in Figure 12.

Interpreting the elevation depends partly on the meaning of \(\text{kūṭapratāra} \), the term used here instead of the more usual \(\text{prastāra} \). Prastāra is generally taken to mean conceptual beam (\(\text{attara} \)) and the eave moulding (\(\text{kapota} \)), together with the floor moulding (\(\text{prati} \)) above (see Figure 6).\(^{13}\) \(\text{Kūṭapratāra} \) could conceivably mean an ‘entablature’ that includes the entire \(\text{kūṭa} \) or upper pavilion, as well as the \(\text{kapota} \). This interpretation, followed in Figure 11a,
demands that the uppermost tier, below the dome, should mirror the others in having a crowning chain of pavilions (a hāra, though the term is not found here) – a feature, incidentally, that became the norm for the top storey in eleventh-century Karnataka, but remained unusual for that position in the far south. Several problems are made apparent by Figure 11a. The first storey is dumpy; there is insufficient upward diminution, as the second storey is identical in size to the first and succeeding ‘entablatures’ are all of equal height.\(^{14}\) Moreover, this version gives us uncomfortably compressed pavilions, while, from the second storey upwards, an abnormal expanse of pilaster shaft is visible.

\textit{Kūṭapraśṭāra} appears, therefore, to mean an entablature that supports the \textit{kūṭa}, rather than including it – in other words the same as the generally understood sense of \textit{prastāra}. As shown in Figure 11b, this interpretation allows the top storey to take the form, normal in Tamil Nadu, of a crowning \textit{alpa-vimāna}. The interpretation assumes that the \textit{kūṭas} and \textit{śālās} of each storey overlap with the storey above, with the advantage that one is free to give them comfortable proportions and make them diminish. Here the fact that the first two \textit{jaṅghās} are equal is not nearly as disturbing. However, there remains an absence of diminution in the \textit{prastāras}, and as drawn here there is one fatal flaw: the pavilions, even if kept rather low, clash with the pilaster mouldings behind them.

In Figures 11a and 11b the shrinking of the width of the tower from level to level has been gauged by eye, as the text gives no explicit instructions about how to do this. I am extremely grateful to Bruno Dagens for pointing out the likely implicit method,\(^ {15}\) which overcomes various difficulties and results in a far more convincing elevation. The width of each successive tier can be calculated in proportion to the remaining height, as shown in Table 3 provided by Dagens and as illustrated in Figure 11c. Here there is no clash between pavilions and pilasters. The problem with the equal \textit{prastāra} heights remains, however, still attesting to the dominance of the numbers game. The corollary of the method for calculating storey widths, that the foot of the corner of the first storey lines up with the equivalent points all the way up the tapering tower, is what makes the first storey rather short.

Interestingly, this very form of all-the-way-down alignment is present to a large degree in the interpretations of the \textit{Mānasāra} drawn by Ram Raz’s collaborator. In his ‘Vimāna consisting of five Stories’ (Figure 1), a steeper profile (height = twice the width) allows the first \textit{tala} to be rather taller than its equivalent in the \textit{Samarāṅgana}. And one need only look at Darasuram (Figure 12) to

\[\text{Height} = \frac{1}{2} \times \text{Width} \text{ [or \% or } \frac{1}{4} \text{ or 2]}\]
realise that certain actual temples may well follow this principle and that the effect of a short first storey may be mitigated by a sub-base or pedestal. Could it be that the intellectual formulations of texts have begun to feed back into practice? It is worth reflecting on how, in practice, this kind of alignment of corners can be achieved. In a drawing it can be arrived at simply by tracing a line. For building an actual temple, the widths of the storeys could be calculated as in Table 3. However, the starting point of a storey, if conceived as standing on a prastāra, is theoretical rather than tangible, especially where the profile of the superstructure necessitates false or applied (arpitā) rather than freestanding (anarpitā) parapets. Since it is of dubious use to calculate the positions of hidden points, the more practical method would be to scale off a drawing.

Figure 13 is drawn, from toe to tip, from the concluding detailed description of the five-storey Drāviḍa temple of the Samarāṅgaṇa. I have dutifully drawn the Śrībandhapīṭha with its erroneous sequence, scaled to the prescribed 2½ bhāgas. Above this the sequences of mouldings are largely true to life, though once again the unlikely and monotonous proportion of 1:1:1:1:1 appears everywhere. Between the different storeys there are a few slight and improbable variations in the sequences and in their relative proportions, and many variations in the terms used. As one nears the summit an inconsistency looms into view: the description is actually of a six-storey temple – five fully-aedicular bhūmis plus a top tier in the form of an alpa-vimāna. Is this, therefore, a misplaced description of the ṣaṭbhūmika-prāsāda?

The detailed descriptions of elevations are introduced by such phrases as ‘The number of hastas (cubits) has been indicated: now the subdivision will be explained’ (verse 74). This suggests that the proportions of part to part lain down in the detailed descriptions are relative to the dimensions given for the respective bhūmis in the general descriptions. That would account for the fact that, in the detailed description being examined here, each tier above the first (52 parts) is virtually the same height (36-37 parts), i.e. without diminution. However, even if the anomaly of the sixth storey is ignored, the fit between the detailed description and the general one is weak. If we work out, from the detailed description, the ratio in each storey of the kūṭaprasṭāra to the wall, it does not correspond closely to the ratio implied by the general description. And if the first storey in the design deduced from the detailed description is ascribed a width based on the ratio of width to height implied by the general description, then its aedicular components become ridiculously broad and squat.

Conclusion

A sthapati wishing to follow the Samarāṅganasūtradhāra faithfully in the design of Drāviḍa temples would find his aim complicated by ungainly proportions, contradictions, and occasional solecisms. Many of the perversities in the text are casualties of its transmission through space and time. Yet an underlying logic comes across, and this is based on an ingenious arithmetical game that is partly at odds with Drāviḍa temples as known from the architectural tradition itself. The person or people who originally wrote Chapters 61 and 62 of the Samarāṅganasūtradhāra knew Drāviḍa temple architecture intimately, but expounded it a way that was not always helpful for practice. Perhaps, then, it was written by and for south Indian connoisseurs. And if, as seems certain, the text came from the distant south, it is unlikely that, once these chapters had been sewn into Bhoja’s compendium, the south Indian temple architecture depicted in them could be imagined by aesthetes at court in Dhar. Compendiousness must then have been an end in itself, as this would have been a text that the literate could not understand and the practical could not use.

But before it is concluded that the function of vastuśāstras was therefore not to be understood or used for design, it should be pointed out that some texts are more usable. A case in point is the Śvastika form of three-storeyed temple explained by the Mayamata, which I have interpreted in Figure 14. Here the width of each storey is specified together with its horizontal subdivision; hence the whole profile can be worked out, as can the aedicular composition within it. Some options are given, so decisions need to be made. There are options for the temple height in proportion to its width, and I have chosen the ratio of 1:1½, so that a vertical part or bhāga is one and a half times a horizontal one. The prastāra height is given, but judgment must be exercised in deciding the heights of the kūṭas and sālās and of their constituent mouldings. As the text says that the sālās of the first storey are taller than the kūtas, I have chosen to use a two-tier or ṣadvarga-sālā (cf. Figure 12). I have balked only at burdening the upper storey with ‘sixteen small niches as well as ninety-six small false dormer windows’. This top tier is set back to a surprising degree, yet altogether the result, to my eyes, is a pleasant Cola period vimāna. There has been room for interpretation and invention, and at the same time the satisfaction of being true to the śāstra.

Vastuśāstra texts, then, vary in their degree of utility as guides to design. This is true when different chapters within the Samarāṅganasūtradhāra are compared, and I hope to demonstrate in future studies that some of the Samarāṅgana’s instructions for Nāgara and Bhūmija temples yield coherent designs. Each text must be taken on its own terms, and perhaps there can be no general conclusions as to authorship and audience. Before such questions can be broached for a given text, a necessary first step is to try to draw the architecture that it describes.
APPENDIX

The Five-storey Temple (*pañcabhūmika-prāsāda*),
from the *Samarāṅgaṇasūtradhāra*, Chapter 62.

[This translation by Mattia Salvini is included here to show how the interpretations put forward in the article have been arrived at. Technical terms have not been given English equivalents, as it is felt that a better understanding can be gained by reading the text in close conjunction with Figures 11 and 13. This is work in progress; comments and suggestion will be welcomed by the author of this article and by the translator. The passage begins with the overall description illustrated in Figure 11.]

pañcabhaumam atha brūmaḥ prāśādaṁ rājapūjitam || 106 ||
We will now explain the five-storeyed temple, worshipped by kings.

vistāreṇa vidhātavyaḥ sa hastra(stā)n ekaviṁśatim |
vibhājayat tathotsedham pādonatriśatam karān || 107 ||
107. It should be built with a width of twenty-one cubits. One should then divide its elevation into thirty cubits minus a quarter.

pīṭhaṁ bhāgadvayaṁ sārdhaṁ jaṅghā(śārāmrā)39 tribhāgikī |
kurvīta kūṭaprastāraṁ sārdhahastaṁ ca buddhimān || 108 ||
108. The pīṭha (base) is two bhāgas and a half, the jaṅghā (wall zone) is three bhāgas. The intelligent should construct a kūṭaprastāra of one and half cubits.

jaṅghā dvitīyā kartavyā hastatritayam ucchritā |
bhūyo'pi kūṭaprastāraṁ sārdhahastāṁ prakalpayet || 109 ||
109. A second jaṅghā should be constructed, with a height of three cubits. Once again one should construct a kūṭaprastāra of one and half cubits.

jaṅghā tṛtīyā kartavyā pādahīnaṁ karatrayam |
sārdhahastasamutsedhaṁ kūṭaprastāra iṣyate || 110 ||
110. The third jaṅghā should be constructed, three cubits minus a quarter. The kūṭaprastāra is accepted as one and a half cubits in elevation.

caturthabhūmijāṅghā ca sārdhahastadvayoocchritā |
kūṭaprastāraṁ kuryāt pūrvamānena buddhimān || 111 ||
111. The jaṅghā of the fourth storey should be two cubits and half high. The intelligent should construct a kūṭaprastāra of the same size as the previous ones.

pañcamyāṁ bhuvi kurvīta (jaṅghā sā?) hi karadvayam |
kurvīta kūṭaprastāraṁ tathā prāgāt(gu)dito yathā || 112 ||
112. On the fifth level one should construct a jaṅghā of two cubits. One should build the kūṭaprastāra as explained earlier.

kuryādd hastadvayotsedhaṁ kapotam api buddhimān |
caturbhāgasamutsedhaṁ mahāghaṇṭā vidhīyate || 113 ||
113. The intelligent should also construct a kapota with an elevation of four bhāgas.

upariṣṭād bhavet tatra prāsāde pañcabhūmike |
kumbhaṁ tadūrdhvaṁ kurvīta starān ekonaviṁśatim || 114 ||
114. On the upper portion of that five-storeyed temple, one should construct a kumbha above (the ghaṇṭā), divided into nineteen staras.

saṁsthānam etat kartavyāṁ sarvatobhadrasamūḍhakau(ke) |
vibhājayed viśeṣaṇa tataḥ staravitbhājanāt || 115 ||
115. This type of arrangement is to be constructed for the one called Sarvatobhadra.21

[The overall description ends here, and the text continues with the detailed description illustrated in Figure 13]

One should then specifically subdivide according to a division into staras.

śrībandhapīṭhaṁ kartavyaṁ sārdhahastadyayocchritam |
caturdaśastaraṁ jaṅghāyat kartavyā stambhasaṁnyutā || 116 ||

116. A śrībandhapīṭha should be constructed, with a height of one cubit and a half.
The jaṅghā should be built in fourteen staras, endowed with a stambha (pilaster).

cartavyā dvistarā mālā laśunaṁ starasammitam |
vidadhīta staraṁ padmakumbhagaṇḍasamanvitam (?) || 117 ||

117. The mālā should be built in two staras, while the laśuna measures one stara.
One should construct one stara of padmakumbhagaṇḍa(?)

ucchālaṁ dvistarāṁ kuryā(śīdo?)bhāgaṁ vidhīyate |
dvistarāṁ hīrakāṁ kāryaṁ paṭṭās caiva tathāvidhīh | 118 ||

118. One should construct the uchchāla in two staras, while the iḍa is built as one bhāga.
The hīra should be built as two staras, and the paṭṭa should be the same as that.

paṭṭikā staraṁ ekaṁ ca vasantaṁ dvistarāṁ tataḥ |
vasantapaṭṭikā bhāgaṁ kapotaṁ tristaraṁ tataḥ || 119 ||

119. The paṭṭikā is one stara, then the vasanta is two staras;
the vasantapaṭṭikā is one bhāga and then the kapota is three staras.

chedam ekastaraṁ kuryāt staraṁ meṭhakāṁ |
makaraṁ bhāgaṁ ekaṁ ca bhāgam (carāla?) paṭṭikā(?) || 120 ||

120. One should construct the cheda in one stara and the makara measuring one stara.
The makara is one bhāga, and the paṭṭikā is one bhāga as well.

kurvīta bhāgikāṁ chedaṁ tataḥ kaṇṭham ca bhāgikam |
kaṇṭham chedaṁ tataḥ kaṇṭham ca ++++ bhāgikam || 121 ||

121. One should build the cheda in one bhāga and then the kaṇṭha in one bhāga.
There is a kaṇṭha, a cheda, then again a kaṇṭha (…), one bhāga in size.23

(vākhyāpaṭṭikām?) bhāgaṁ vedīṁ vicaksanāḥ |
kurvīta bhāgikāṁ chedaṁ tataḥ kaṇṭhaṁ staradvayam || 122 ||

122. The expert should make the vākhyāpaṭṭikā (?) and the vedī one bhāga in size,
the cheda in one bhāga, and then a kaṇṭha of two staras.

staraṁ prakurvīta paṭṭikā paṭṭikā padmapaṭṭikā |
kūṭaprastārake kuryān makaraṁ pañcakam || 123 ||

123. One should construct the paṭṭikā and padmapaṭṭikā, each being one stara in size.
In the kūṭaprastāra one should make five makara faces,

vicitrarūpaṁ sarvāsu dikṣu sarvagunānvitam |
ūrdhvataḥ paṭṭikāyās tu ghaṇṭā pañcastārā bhavet || 124 ||

124. with a striking appearance, endowed with all good qualities, in all directions.
Above, the ghaṇṭā of the paṭṭikā should be of five staras,

nāsikābhir vicitrabhir atyudārābhīr anvītā |
bhadrāṇi yasya dṛṣyaṁ kūte kūte samantataḥ || 125 ||

125. endowed with beautiful, and extremely large nāsikās (false dormer windows).
Where, in each kūṭa, on every side, bhadras (or, good things) are to be seen,

sa sarvatabhadra iti prāsādaḥ śilpināṁ mataḥ |
avalambaṇa tadanu stambhacchedaṁ prakalpayet || 126 ||

126. that temple is considered to be the Sarvatobhadra by the craftsmen.
As a support for that, one should construct a stambhaccheda.

[Verses 127-133a have been omitted here. These discuss the relative degrees of projection of various mouldings. The ascent then continues with the second tier.]

mālādyair laśunaṁ caikaṁ bharaṇaṁ kalaśas tathā |
yathā mālā tathocchālaṁ víragaṇḍaṁ staraṁ bhavet || 134 ||

134. There should be one laśuna with mālā and so forth, a bharaṇa, and a kalaśa.
Just like the mālā, so also the uucchāla and the víragaṇḍa should be of one stara.

uccālahāiraṁ paṭṭasame kuryaṁ vicākṣaṇaṁ |
paṭṭikā bhāgikotsedhaṁ vāsantaṁ + + kā tathā || 135 ||

135. The expert should construct the uucchāla and hīra of the same size as the paṭṭa.
The paṭṭikā should be one bhāga high, and the vāsanta in the same way (one bhāga?24).

kapotaṁ tristarotsedhaṁ (chedo?) satryaṁśavarjitam |
chedasyārdhe bhaven meḍho makaraṁ paṭṭikā tathā || 136 ||

136. The kapota should be three staras high, and the cheda should be that minus three aṁśas.
The meḍha should be half of the cheda, the makara and the paṭṭikā should be the same as that.

tataḥ chedaṁ (ca) kanṭhaṁ ca +++ paṭṭikāṁ tathā |
mālārdhena prakurvita cchedam eva tato budhah || 137 ||

137. Then there should be a cheda, a kanṭha and a paṭṭikā.25
After that, the intelligent should construct a cheda half the size of the garland.

punaḥ kanṭhaṁ prakurvita hīrakegonaṁ samanvita |
paṭṭi(kā) padmapūrvā ca tribhāgo(ge) na kapotake || 138 ||

138. Once again one should construct a kanṭha, endowed with a hīra.
There should be a paṭṭikā, preceded by a padma, in the kapota.26

kuryaṁ catuḥ staraṁ ghanṭāṁ dvābhyaṁ kumbhaṁ tathopari |
punaḥ cheda bhaved bhāgaṁ jaṅghāṁ kurvita saptabhiṁ || 139 ||

139. One should construct a ghanṭā of four staras, and on top of that a kumbha in two staras.

[The third tier begins here, on top of the cheda]

Again, there should be a cheda of one bhāga, and one should construct a jaṅghā of seven staras.

(sītamāṭhā?) vidhātavya māloccu(co) dvistaro bhavet |
laśunaṁ bharaṇaṁ kumbho gaṇḍa ceti staraṁ staram || 140 ||

140. A sītamāṭhā (sītamālā?) should be constructed: the height27 of the mālā should be two staras.
The laśuna, bharaṇa, kumbha, and gaṇḍa should be one stara each.

gaṇḍadviguṇam uucchālaṁ hīrapatīas tathaiva ca |
paṭṭikā staraṁ ekaṁ syād vasantapatītikāya ca || 141 ||

141. The uucchāla should be twice the size of the gaṇḍa, and likewise the hīrapatīta.
The paṭṭikā should be one stara, as also its vasantapatītikā.

pīṭhaṁ dasa(śa)gunaṁ kuryaḥ chedamēṭhau staraṁ staram |
staraṁ kurvita (rākara?) (tathā) makaraṇpaṭṭikām || 142 ||
142. One should construct a pīṭha in ten guṇas, while the cheda and mentha should be one stara each. One should construct the rākara (makara?) in one stara, and so also the makarampaṭṭikā.28

\[
\begin{align*}
\text{staraṁ} & \text{ chedaṁ ca kaṇṭhaṁ ca paṭṭikāṁ vedikāṁ tathā} \\
\text{chedaṁ kuryāt punar bhāgaṁ kaṇṭhaṁ taddvīguṇaṁ tataḥ} \quad || 143 ||
\end{align*}
\]

143. The cheda, kaṇṭha, paṭṭikā and vedikā should be one stara each. Again, one should construct a cheda of one bhāga and then a kaṇṭha twice that size.

\[
\begin{align*}
\text{paṭṭikā} & \text{ staram ekaṁ syād vasantapaṭṭikā staram} \\
\text{catuḥstaraṁ bhaved ghaṇṭā (prāgrācakabhūṣita ?)} \quad || 144 ||
\end{align*}
\]

144. The paṭṭikā should be one stara, and the vasantapaṭṭikā should be one stara. The ghaṇṭā should be four staras, (ornate with prāgrācaka = prāgrivaka?)

\[
\begin{align*}
\text{tasypari punaḥ kumbhaṁ ghaṇṭārdhenaiva kārayet} \\
\text{chedaṁ bhāgaṁ vijānīyāj jaṅghā saptaṁśikā smṛtā} \quad || 145 ||
\end{align*}
\]

145. Again one should construct on top of that a kumbha half the size of the ghaṇṭā.

[The fourth tier begins here, on top of the cheda]

One should know the cheda to be one bhāga, while the jaṅghā is known to be seven aṁśas.

\[
\begin{align*}
\text{mālā} & \text{ dvibhāgikā kāryā bhāgikaṁ laśunaṁ bhavet} \\
\text{bharaṇaṁ kumbhakāṁ gaṇḍāṁ kuryāl laśunavad budhaḥ} \quad || 146 ||
\end{align*}
\]

146. The mālā should be constructed two bhāgas in size, while laśuna should be one bhāga. The intelligent should construct the bharaṇa, kumbhaka and gaṇḍa the same size as the laśuna.

\[
\begin{align*}
\text{ucchālāṁ gaṇḍakaṁ caiva hīrakāntaṁ ca bhāgikām} \\
\text{sārdhaṁ bhāgaṁ bhavet ++ paṭṭikārdhena staraṁ bhavet} \quad || 147 ||
\end{align*}
\]

147. The uchāla, gaṇḍaka and hīrakānta should be one bhāga each. The (...) should be one and a half bhāgas, while the paṭṭikā should be half a stara.

\[
\begin{align*}
++ & \text{taṁ bhāgam ekaṁ syād vasantākhyā ca paṭṭikā} \\
\text{kapotaṁ tristaraṁ kuryān nāsāyuktaṁ vicakṣaṇaḥ} \quad || 148 ||
\end{align*}
\]

148. The (...) should be one bhāga, and so also the paṭṭikā called vasantā. The expert should construct a kapota of three staras, endowed with nāsās (false dormer windows).

\[
\begin{align*}
\text{chedam aṁśena kuryā (maṇḍam aṁśena ?) kārayet} \\
\text{makare paṭṭikāṁ chedaṁ vidadhīta staraṁ staram} \quad || 149 ||
\end{align*}
\]

149. One should construct a cheda of one aṁśa, and should build a maṇḍa of one aṁśa. In the makara, one should build a paṭṭikā and a cheda, one stara each.

\[
\begin{align*}
\text{kuryāt bhāgikāṁ (kaṇṭhaṁ) paṭṭikāṁ vedikāṁ api} \\
\text{bhāgaṁ kuryāt punaḥ chedaṁ tataḥ kaṇṭhaṁ dvibhāgikām} \quad || 150 ||
\end{align*}
\]

150. One should make a kaṇṭha, paṭṭikā and vedikā of one bhāga each. Again, one should construct a cheda of one bhāga and then a kaṇṭha of two bhāgas.

\[
\begin{align*}
\text{paṭṭikā} & \text{ padmapūrvā ca vidhātavyā staraṁ staram} \\
\text{kurvīta ghaṇṭāṁ upari caturbhāgāṁ vicakṣaṇaḥ} \quad || 151 ||
\end{align*}
\]

151. The paṭṭikā and the padmapūrvā should be built one stara each. The expert should construct on top of that a ghaṇṭā of four bhāgas.

\[
\begin{align*}
\text{tadardham ūrdhvatāḥ kumbhaṁ chedadārdena tasya ca} \\
\text{jaṅghā saḍbhāgikā kāryā (mattā gena suna kārayet ?)} \quad || 152 ||
\end{align*}
\]

152. Above that, there is a kumbha half that size, and a cheda half the size of the kumbha.
A jaṅghā of six bhāgas should be made (...)

laśunaṁ bharanaṁ kumbham gaṇḍam uccāla(vāda?) ke |
hīrakaṁ ceti kūrīta bhāgikāṁ prthak prthak 153

153. One should construct the laśuna, bharana, kumbha, gaṇḍa, the uccāla and vāda (vedikā?), and the hīra, each being one bhāga in size.

sārdhabhāgam bhavet paṭṭaṁ paṭṭikārdhastarocchritā |
vasantaṁ bhāgam ekaṁ syād vasantākhyaṁ ca paṭṭikā 154

154. The paṭṭa should be one and a half bhāga, while the paṭṭikā should have a height of half a stara.

The vasanta should be one bhāga, as also the paṭṭikā called vasantā.

kapotaṁ tristaraṁ kuryāc chedaṁ (tryaṁsonaṁsakām?) |
maṇḍako makaraś caiva paṭṭikā chedakaṇṭhakau 155

155. One should make a kapota in three staras, and the cheda (...).

The maṇḍaka, makara, paṭṭikā, cheda, kaṇṭhaka,

kaṇṭhaṁ paṭṭi ca vedī ca cchedaṁ ca sārdhaṁ staram |
dvītyo dvistaraṁ kaṇṭho bhāgikāṁ paṭṭikā bhavet 156

156. kaṇṭha, paṭṭī, vedī and cheda should be one stara each.

The second kaṇṭha should be two staras, and the paṭṭikā should be one bhāga.

tathaiva padmasaṁjña ca syād ucchrāyeṇa paṭṭikā |
ghaṇṭāṁ kuryāc caturbhāgam kumbham ardhena tasya ca 157

157. The paṭṭikā called padma should have the same height.

One should construct a ghaṇṭā of four bhāgas, and a kumbha half that size,

chedam ekena bhāgena jaṅghāma+rdhabhāgikām |
mālām ekena bhāgena laśunaṁ sārdhabhāgikām 158

[The anomalous sixth tier begins here, on top of the cheda]

158. a cheda of one bhāga, a jaṅghā of (half or one and a half) bhāgas, a mālā of one bhāga,33 and a laśuna of one and a half bhāgas.

Tathaiva bharanaṁ kuryāt kumbhocchāle staraṁ staram |
hīrakaṁ bhāgikāṁ kuryāt paṭṭhaṁ sārdhaṁ sārdhaṁ tataḥ 159

159. In the same way one should construct a bharana, and the kumbha and uccāla in one stara each.

One should create the hīra in one bhāga and then the paṭṭa in one and a half stara.

paṭṭikārdhastaraṁ kāryā vasantaṁ ca staraṁ tataḥ |
kapotau dvistaraṁ kuryād vedīm ardhastaraṁ tathā 160

160. The paṭṭikā should be made half a stara in size, and then the vasanta in one stara.

One should construct a kapota of two staras, and a vedī of half stara.

yathā chedas tathā maṇḍo makaraś ca vidhiyate |
paṭṭikārdhastaraṁ kāryā chedoḥ py ardhastaraṁ bhavet 161

161. The maṇḍa and makara are to be built just the same size as the cheda.

The paṭṭikā should be built in half a stara, and the cheda also should be half a stara.

bhāgaṁ kaṇṭhaṁ paṭṭikā ca vedī kāryā dvibhāgikā|
chedo bhāgena kartavyaṁ kaṇṭhaṁ cānyaṁ tribhāgikā 162

162. The kaṇṭha and paṭṭikā should be one bhāga, while the vedī should be constructed as two bhāgas.
The cheda is to be made as one bhāga, and one more kanṭha should be built as three bhāgas.

\[
\text{paṭṭikāṁ padmapatricā vidadhitā staraṁ staram}
\]

163. One should build the paṭṭikā and the padmapatri in one stara each. The calana of the tunga should be constructed contiguously to that, and of two bhāgas.

\[
\text{ghaṇṭā kāryā samutsedhā(t) trayastrīṁśadvibhāgikā}
\]

164. The ghaṇṭā should be constructed with a height of thirty bhāgas, endowed with a Sarvatobhadra and ornate with candraśālās.

\[
\text{tasyopari (bhave) kumbhaś caturdāśadvibhāgikeḥ}
\]

165. One should construct a padma of three staras, endowed with beautiful petals. Above that, there should be a kumbha of fourteen bhāgas.

\[
\text{grīvā dvibhāgikā kāryā karṇā caiva tathāvidhāḥ}
\]

166. The grīvā should be constructed in two bhāgas, and the karna should be of that same size. Then a bijapūra should be constructed, beautiful\(^{14}\) and half that size.

\[
\text{padmacakraṁ triśūlampā vidhātavyaṁ yathocitam}
\]

167. A padmacakra or a triśūla should be made, as appropriate, endowed with proṭtuṅga and grāsa, (…) and having makaras and meḍhakas.

\[
\text{proṭtuṅgrāsasamuyktaṁ + makaramedhakaiḥ}
\]

168. One should construct a sottuṅga and kūṭaka in this way, both in the main and intermediate directions. On each storey, a śālā should be built, with sādhyalatoranaś.

\[
\text{koṇe koṇe ca (+ karā) bhadre karikya(karā)nān āpi}
\]

169. On each of the good corners (one should create\(^{16}\)) karikara\(^{17}\) (‘elephant’s trunks’) as well. Endowed with three (…) kūṭas and four jalāntaras (recesses),

\[
\text{kurvīta sarvatobhadram evaṁlakṣaṇalakṣitam}
\]

170ab. One should construct the Sarvatobhara according to these specific features […]

Note: As the author is serving as Editor of *South Asian Studies* it needs to be noted here that this article has been peer reviewed, by Professor M. A. Dhaky and Professor Bruno Dagens.

ACKNOWLEDGEMENTS

This study has been made possible by funding from the Arts and Humanities Research Council for the project entitled ‘The Indian Temple: Production, Place, Patronage’. Thanks are due to Mattia Salvini, whose collaboration has been the whole basis of this article. I am very grateful M. A. Dhaky for his support, and to Bruno Dagens for his invaluable contribution.

NOTES

2. Exceptions are the reconstructions of three plans from the *Samarāṇgaṇasūtradhāra* by Stella Kramrisch in *The Hindu Temple* (Calcutta: University of Calcutta, 1946), pp. 247, 250, 251; and the two elevational diagrams by Bruno Dagens in *Mayamata: an Indian Treatise on Housing, Architecture and Iconography*, ed. by Bruno Dagens (Delhi: Sitaram Bharatia Institute, 1985), pp. 144, 139. Mention should also be made of the drawings in P. K. Acharya’s works on the
Mānasāra, in a strange, hybrid style that, as far as I know, has never been seen in a real building, even from the 1920s.

3 The Sanskrit text was published as Samarangana Sūtradhāra of Maharajadhiraja Bhoja, ed. by T. Ganapathi Sastry (Baroda: Gaekwad Oriental Series Vols. 25 and 32, 1924 and 1925). It was drawn on extensively by Kramrisch, and by D.N. Shukla in Vāstu-Sāstra: Hindu Science of Architecture (Delhi: Munshiram, 1993). The text has recently been translated into English by Sudarshan Kumar Sharma, as Samarāṅgaṇa Sūtradhāra of Bhojadeva: An Ancient Treatise on Architecture (Delhi: Parimal Publications, 2007).

To me the architectural parts of this translation are totally opaque. An excellent translation and critical commentary by Felix Otter on the parts of the text concerning domestic architecture has just been published: Residential Architecture in Bhoja’s SamaranganaSūtradhāra (Delhi: Motilal Banarsidass, 2009).

5 Otter takes bhāga as a term to form fractions; it may work in other contexts, but in this chapter, stara and bhāga are clearly used as synonyms. See also 14.24, where bhāga and pada are used interchangeably: paścimottarabhāgaṁ vāpī api ca kārayet | vā(yau?yu)sugrīvapadayor gandharvasya ca bāhyataḥ || (MS)

6 In fact the Brhādiśvara at Tanjavur (c. AD 1000) set the trend for many-storeyed temples. For my argument that this temple, strictly speaking, has fourteen storeys, rather than fifteen, see Adam Hardy, The Temple Architecture of India (Chichester: Wiley, 2007), pp. 220-21.

Dagens argues that a brief mention in the Mayamata of temples with sixteen storeys is a later interpolation taking account of the large Cola temples: see Mayamata, p. v.

8 As suggested to me by Michael Willis.

9 See Kramrisch, p. 268.

10 Pierre Pichard has shown that the storeys of the temple at Gangaicondacholapuram do diminish according to a geometrical progression: Thanjavur Brhādiśvara. An Architectural Study (Delhi: IGNCA and École Francaise de l’Extrême Orient, 1995), pp. 84-93.

11 See note 19, which allows for the possibility that the stages may indeed add up to 29¾.

12 Mattia Salvini supports this interpretation, and has provided the following note: ‘Puns are such a common feature of Sanskrit literature that indeed it is unlikely that the name Sarvatobhadra would not have been felt to indicate its most literal sense as well as its technical one. Besides, the name is explicitly interpreted in this manner in another place too (Chapter 55, verse 31): karoti sarvato bhadram sarvatobhadrakah krtah Once constructed, the Sarvatobhadra causes good on all sides (sarvato bhadram). To be precise, it is likely that bhadra is used here in a sense akin to ‘meritorious’ or ‘auspicious’. The more technical sense of Sarvatobhadra as [a temple] ’with bhadas on all sides’ is given in the etymology offered in chapter 62, verses 125-126, translated in the Appendix.’

13 Prastāras are shown in this way in Ram Raz, Plate XIX. For the same understanding in a treatise by a contemporary practitioner of Drāvida architecture, see V. Ganapati Sthapati, Sthapatya Veda (Chennai: Dakshinā Publishing House, 2005), drawing on p. 392.

Note 19 has arrived too late for revisions to be made, but the first storey may in fact be half a bhāga taller than the second. Table 3 would have to be recalculated, and Figure 11a-c redrawn slightly differently. Such are the hazards of working with texts, but the reader must decide whether or not this bhāgas up my entire argument.

14 ‘J’ai été surpris quand vous écriviez que “no instructions are given for how to diminish the width of the tower from level to level”, car ce sont des indications qui sont très systématiquement fournies d’une manière ou d’une autre. Enfin il me semble que le problème est réglé en utilisant votre hypothèse sur le sens de karnamanena, car si elle permet d’obtenir la hauteur à partir de la largeur elle permet aussi le contraire: cela nous donne donc le tableau que vous trouverez en pièce jointe et apporte une preuve de plus que votre hypothèse tient la route’ (Bruno Dagens, personal communication).

Ibid. 21.9.

17 Following the suggestion of hastān instead of hastrān (MS).

Sārāmrā could be possibly split as sāra+āmra, giving a sense akin to ‘pithy mango’, which fits neither context nor metre. I would propose that it may be a corruption of sārdha-, which would then mean that the jaṅghā should be made as three bhāgas and a half (MS).

Accepting the suggestion of prāg udito (MS).

Accepting -samjñāke (MS).

I would propose that carāla may actually have been ca + a two-syllable term qualifying paṭṭikā (MS).
‘One bhāga’ is tentative. Since four syllables are missing, it is impossible to exclude other possibilities, like ‘two and a half bhāgas’ (sārdhadvibhāgikam) or ‘three and a half bhāgas’ (sārdhatribhāgikam), or ‘one and a half bhāga’ (kuryāt sārdhabhāgikam) (MS).

I would propose that ++kā may have been bhāgikā (MS).

Here vasanta- paṭṭikām would fit the metre (and perhaps the context) well (MS).

Here I translate accepting the suggestions of hīrakeṇa, paṭṭikā and tribhāgena. (MS).

Accepting mālocco (MS).

Accepting daśa- and tathā (MS).

Considering metre and context, I wonder whether the missing part could be kanṭham (MS).

Could the missing bit be vasantam? Compare verse 154 (MS).

This could also mean ‘The paṭṭikā, preceded by a padma’ (MS).

The measurement of the jaṅghā is here tentative. Another available reading is jaṅghāṁ marddho tribhāgikīṁ. Perhaps it could have been jaṅghāṁ sārdhatribhāgikīṁ, in which case the jaṅghā would be three and a half bhāgas (MS).

Accepting mālam ekena (MS).

Reading śobha- (MS).

Sādhyalatoraṇa probably a corruption (MS).

Perhaps +karā could have been kurvīta? (MS).

Accepting the suggestion of karikarān (MS).