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Rescue of long-term memory after reconsolidation
blockade
Simon Trent1, Philip Barnes2, Jeremy Hall1,3 & Kerrie L. Thomas1,4

Memory reconsolidation is considered to be the process whereby stored memories

become labile on recall, allowing updating. Blocking the restabilization of a memory during

reconsolidation is held to result in a permanent amnesia. The targeted knockdown of either

Zif268 or Arc levels in the brain, and inhibition of protein synthesis, after a brief recall

results in a non-recoverable retrograde amnesia, known as reconsolidation blockade. These

experimental manipulations are seen as key proof for the existence of reconsolidation.

However, here we demonstrate that despite disrupting the molecular correlates of

reconsolidation in the hippocampus, rodents are still able to recover contextual memories.

Our results challenge the view that reconsolidation is a separate memory process and instead

suggest that the molecular events activated initially at recall act to constrain premature

extinction.
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R
econsolidation theory proposes that stable, consolidated
memories under certain experimental conditions can enter
into a labile state on recall, allowing the updating or

strengthening of the stored memory1,2. These memories must
then be actively restabilized through a process of reconsolidation
otherwise they are lost, resulting in a permanent amnesia3,4.
Memory recall is accompanied by specific molecular processes,
including the expression of the genes Zif268 and Arc and the
synthesis of new proteins. Disruption of these molecular
processes following memory recall in conditioning studies has
been shown to result in a permanent amnesia, and this is
considered to be the key experimental demonstration of the
existence of reconsolidation as a separate memory process4,5.

On the other hand, memory recall also has the potential to
initiate extinction of the memory6. Extinction is considered to be
a new learning process in which stimuli gain new predictive
properties. As such, extinction memories come to compete for
behavioural control at recall and the behaviour driven by the
original memory is suppressed7,8. Notably, following extinction,
memory-driven behaviours can later be revealed by experimental

manipulations such as a reminder stimulus9. In conditioning
studies, extinction is engaged when a conditioned association is
repeatedly retrieved or recalled for an extended period without
further reinforcement10,11. During recall, a careful balance must
be achieved in maintaining the original memory and initiating
extinction. It is therefore possible that the molecular processes
accompanying the initial phase of memory recall act to constrain
the premature engagement of extinction rather than to mediate
reconsolidation.

In our contextual fear conditioning protocol in rats, targeted
knockdown of plasticity and memory-associated molecules in the
dorsal hippocampus during a brief recall trial resulted in the loss
of expression of fear memory5. We sought to disambiguate
between two alternative explanations of the role of the molecular
events accompanying early memory recall (mediating
reconsolidation versus constraining extinction) by the use of a
reminder stimulus. The reminder stimulus was a low intensity
unconditioned stimulus (US), below the intensity required to
produce de novo conditioning (Supplementary Fig. 1)12,13. The
expression of a fear memory after extinction should be reinstated
by such a reminder US9; however, an experimental manipulation
that disrupts reconsolidation should result in a permanent
amnesia4, and as a consequence, the memory should not be
recoverable by a reminder.

Here, we show that memory recall targeted knockdown of
protein synthesis and the expression of reconsolidation-associated
molecules Zif268 and Arc with directly infused antisense
oligodeoxynucleotide (ASO) agents that are used routinely to
define reconsolidation blockade, do not result in a permanent
amnesia because fear memory can be recovered after a reminder
US. These results call us to reassess the phenomena of memory
reconsolidation as a constructive, independent mnemonic process
and instead suggest that an active process at recall in the dorsal
hippocampus acts to constrain the extinction of memories, rather
than to facilitate reconsolidation.

Results
The transcription factor Zif268 is rapidly expressed following
memory recall14 and has been argued to be a key molecular
correlate of reconsolidation5. We have previously shown that
hippocampal infusion of ASO to Zif268 during a 2-min short
recall (SR) session results in the loss of a recently acquired
contextual fear memory (CFM). Notably, the Zif268-specific
loss of CFM was robust and persistent and did not undergo
spontaneous or state-dependent recovery suggesting a permanent
amnesia consistent with a role of Zif268 in reconsolidation5.
However, we now show that CFM can be recovered after ZIFASO
infusion by interposing a reminder stimulus at a subsequent recall
trial (Fig. 1). The recovery of the conditioned response (CR) by
the reminder was not due to the strengthening of the residual
memory, a Zif268-dependent process15, because reinstatement
was also seen when ZIFASO was administered before the
reminder session. Also, reinstatement of the CR by the
reminder cue occurred when ZIFASO alone or when combined
infusions of ZIFASO and BDNFASO were administered before
the reminder US (Supplementary Fig. 2a,b), demonstrating that
the recovery of the CR was not due to additional incremental
learning by the reminder US16, because BDNFASO blocks new
learning in the absence5 and presence of ZIFASO (Supplementary
Fig. 2c). In addition, the ASO infusions are unlikely to be causing
non-specific effects in the hippocampus because retrieval of
CFM is intact. Later, the rats could discriminate between the
conditioned context and a new context, and could support this
conditioning to a new context (Fig. 1a,b) and there is also no
evidence of gross damage to the dorsal hippocampus after
histological examination17. Thus, the experimental manipulation
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Figure 1 | Intrahippocampal ZIFASO infusions before recall produce an

impairment in CFM that can be reinstated by a reminder US. All rats were

contextually fear conditioned (CFC) using a 2 s, 0.5 mA footshock (US)

2 min after placement into a novel context for 3 min. Two days later they

received ZIFASO 90 min before a short 2 min recall session (SR). Rats

received either PBS (ASO/PBS) or ZIFASO (ASO/ASO) 90 min before a

2 min long-term memory test (LTM) which co-terminated with a 2 s,

0.25 mA reminder US (LTM1). Tests were given 2 (LTM2) and 35 (LTM3)

days later. All rats were subsequently conditioned (CFC2, 2 s, 0.5 mA) and

tested (LTM4) in a novel context. (a) ZIFASO given prior to SR caused a

reduction in conditioned freezing at LTM1 that returned to preinfusion levels

after the reminder US and was maintained for at least 37 days (test;

F(3.277,32.770)¼ 18.910, P¼0.000, e¼0.655, repeated measures ANOVA).

This recovery was seen despite further ZIFASO infusions before LTM1 to

block memory strengthening (test� infusion; F(3.277,32.770)¼0.411,

P¼0.839, e¼0.655, repeated measures ANOVA). (b) No fear memory

was seen in a novel context prior to a second 2 s, 0.5 mA US (CFC2) and

post US plus conditioned freezing at recall (LTM4) indicates intact

hippocampal function in the infused rats (test� infusion;

F(1.797,17.969)¼ 2.054, P¼0.154, e¼0.898, repeated measures ANOVA).

*Po0.05 (corrected for multiple comparisons, ANOVA) compared to SR

and LTM2. n¼6 per group. Results are shown as mean±s.e.m. d, days.
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is consistent with the ZIFASO targeting extinction, therefore,
implicating Zif268 to act on constraining premature extinction,
opposed to mediating reconsolidation.

Arc (Activity-regulated cytoskeletal-associated protein) has
also been argued to play an essential role in fear memory
reconsolidation in the amygdala18. Here we confirm that Arc
expression is rapidly increased in the hippocampal CA1 region
after the recall of CFM, in agreement with other studies19–21

(Fig. 2a–c). Furthermore, the increase in Arc expression was
greater following the SR session compared with a longer 10-min
re-exposure to the conditioned context (Fig. 2a–c), suggesting the
presence of a time-limited refractory period for Arc expression in
response to increasing context exposure, consistent with the
findings of others22–24. The duration of recall is significant as a
2-min recall session does not appreciably affect conditioned
freezing, but renders the CFM susceptible to disruption5, while
10-min recall produces extinction17. Infusing ARCASO into the
dorsal hippocampus before SR resulted in a long-lasting decrease
in fear memory (Fig. 3a), consistent with the proposed role of Arc
in reconsolidation. This effect of the ARCASO was selective
because the extinction associated with longer re-exposure was
apparently unaffected by ARCASO. The efficacy of the ARCASO
was confirmed by western blot by showing a sustained reduction
of Arc protein expression in the CA1 following intrahippocampal
ARCASO infusions (Supplementary Fig. 3). Furthermore, the
decrease was confined to the CA1 and not to dorsal dg/CA3
samples from the same rats (Supplementary Fig. 4). This shows
that the effects of the ARCASO were confined to the target site of
the infusions and the ability of the ARCASO to disrupt the
behavioural expression of fear memory is correlated with reduced
Arc in CA1 specifically.

To differentiate the effects of ARCASO in either blocking
reconsolidation or facilitating extinction with SR, we again used a
brief reminder US. This manipulation revealed that after
ARCASO treatment, the reminder US reinstated memory during
recall (Fig. 3b). The reinstatement of the memory is seen when
ARCASO or PBS is given before the SR (Fig. 3a), demonstrating
that neither state-dependent retrieval deficits25 or new learning26

underlie the recovery of the CR. Therefore, the profile of
ARCASO effects on the CR, like that of ZIFASO, is consistent
with Arc playing a role in preventing extinction rather than in
mediating reconsolidation. We additionally ruled out the
requirement for the combined activities of Zif268 and Arc in
reconsolidation via the co-infusion of ZIFASO and ARCASO
before SR (Supplementary Fig. 5).

A key experimental underpinning of reconsolidation theory is
the finding that blockade of protein synthesis following memory
recall by anisomycin leads to a permanent amnesia4,5. This has
been considered as proof that protein synthesis-dependent
restabilization processes following recall-induced labilization
are necessary for the memory to persist27. Using identical
experimental manipulations to those we have used before5, we
confirmed that anisomycin infused into the dorsal hippocampus
after a SR trial produced the expected reduction in conditioned
freezing at later test, consistent with previous studies (Fig. 4).
However, we now show that the CFM can be subsequently
recovered following the administration of a reminder US. The
recovery of the CR after reminder is seen when anisomycin is
additionally infused after the reminder US. This excludes the
possibility that the initial reduction in CR derives from a retrieval
failure via state-dependent mechanisms25, or is a result of
new learning, strengthening or updating of the memory5,15.
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Figure 2 | Arc expression in the CA1 increases with recall (SR and longer re-exposure (LR)), with the greatest increase at SR. Rats (n¼ 30) were

habituated to a novel context for 10 min/d for 3 d prior to conditioning. Recall of the fear memory 4 d later consisted of exposing rats to the conditioned

context (CS) for either 2 min (SR, short recall, n¼ 10) or 10 min (LR, long recall, n¼ 10). Control rats (n¼ 10) did not undergo recall (no recall).

(a) There was as an increase in freezing behaviour post US during the conditioning period, but no TEST�GROUP interaction (F(2,27)¼0.274, P¼0.763,

repeated measures ANOVA). The LR group showed a reduction in freezing during the last 2 min of the recall session indicating a robust within session

extinction. (b) In situ hybridization revealed the regulation of Arc expression in CA1 30 min after recall (F(2,27)¼ 15.145, P¼0.000, ANOVA). This was due

to an increase in the expression in the SR and LR groups, with a larger increase correlated with SR. *Po0.05, **Po0.01 and ***Po0.001 compared with

the no recall control (Tukey’s test). (c) Photomicrographs (100� ) of small dark silver grains (an index of Arc expression) associated with CA1 pyramidal

cells. Thus, the duration of the exposure to a conditioned context results in the differential regulation of Arc in hippocampal CA1. Scale bar, 50mM.

Results are shown as the mean±s.e.m. d, days.
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Anisomycin-treated animals also remain capable of fear
learning in a new context, precluding any permanent damage
to the hippocampus (Supplementary Fig. 6). Since a canonical
characteristic of extinction is that the CR is temporarily
suppressed but returns under various conditions, the reminder-
induced return of CFM thus reveals an active, protein synthesis-
dependent process in the hippocampus during SR that opposes
extinction rather than mediating reconsolidation.

Discussion
In conclusion, the observations that CFM can be recovered after
using agents that are used routinely to define reconsolidation
blockade calls us to reassess the phenomena of memory
reconsolidation as a constructive, independent mnemonic
process. Indeed, the temporary nature of CFM deficits by protein
synthesis inhibitors at recall has been previously reported28,29.
We add further, weight to these studies by showing
recovery despite disrupting specific molecular correlates of
reconsolidation. In addition these results are corroborated by
human studies that have shown little evidence for the
reconsolidation of hippocampal-dependent memories after
retrieval30–32. Although we cannot exclude the possibility that
reconsolidation may exist for other kinds of associative memory
such as amygdala-based emotional memory4, a greater systematic
investigative approach will be required in future when rejecting
extinction-based interpretations in favour of reconsolidation-
based views of recall-induced amnesia by different experimental

interventions. A single example of memory rescue in such cases
favours an extinction-based interpretation of the phenomena.

Our results suggest that when memory is recalled, a dynamic
balance exists between maintaining the relevance of the original
memory and extinction. We show that under conditions of short-
term recall, Zif268- and Arc-dependent cellular processes in the
hippocampus act to constrain extinction rather than to mediate
reconsolidation. Under this model, changes in the expression of
genes such as Zif268 and Arc in an early phase of recall blocks the
premature engagement of extinction. Consequently, inhibiting
the expression of these genes manifests as a more rapid extinction
process that can then later be recovered by a reminder. However,
under recall conditions that favour extinction, such as longer
recall, these molecular inhibitors of extinction are inactive and
extinction can proceed. As a consequence of identifying an active
molecular process that prevents the extinction of memory, a
simpler theoretical framework can be drawn on when assessing
the site of action of treatments that influence memory expression;
either by directly impacting on extinction or on the regulatory
mechanisms that control extinction.

Reconsolidation is seen as an adaptive mechanism for
maintaining memory relevance via updating or strengthening2.
Furthermore, it is often held as a universal property of associative
memories and failure to observe reconsolidation experimentally,
termed ‘reconsolidation resistance’, have been explained away
because the ‘boundary’ conditions to engage it were not exceeded,
or were altered by experience via metaplastic processes at the
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Figure 3 | Intrahippocampal ARCASO infusions before recall produce impairment in CFM that can be reinstated by a reminder US. (a) Rats were

exposed to the conditioning context for 2 min (n¼ 10) or 10 min (n¼ 12) 2 d after CFC. Half the rats received ARCMSO or ARCASO 1.5 h before recall.

There was no difference in conditioned fear between the groups during the first 2 min of the extinction training (F(1,10)¼0.849, P¼0.379, repeated

measures ANOVA) and no effect of ARCASO on within-session extinction (F(1,10)¼ 3.789, P¼0.08, repeated measures ANOVA). ARCASO prior to recall

had an effect on freezing measured during the recall tests (first 2-min extinction training, PR-STM, LTM1 and LTM2) in the 2-min recall group

(test� infusion; F(2.084,16.674)¼ 7.466, Po0.001, e¼0.695, repeated measures ANOVA), but not the 10-min group (TEST (first 2-min extinction training,

LTM1 and LTM2) X INFUSION; F(1.713,17.128)¼0.844, P¼0.445, e¼0.856, repeated measures ANOVA). This manifested as a reduction in conditioned

fear in the ARCASO compared with the ARCMSO administered rats at LTM1 and LTM2 (*Po0.05, **Po0.01, Tukey’s test). (b) Rats received ARCASO

1.5 h before a short 2-min recall session (SR) 2 d after CFC. Subsequently, ARCASO (ASO/ASO, n¼6) or ARCMSO (ASO/MSO, n¼ 6) was administered

1.5 h before a 2-min recall session that co-terminated with a 2 s, 0.25 mA reminder US (LTM1). Compared with SR, a reduction in conditioned freezing was

seen at LTM1 before the reminder demonstrating that ARCASO infusions reduced fear behaviour and there was no difference in the responses between the

two groups (test� infusion; F(3.179,31.788)¼ 1.019, P¼0.417, e¼0.636, repeated measures ANOVA). The reminder US reinstated contextual fear to

preinfusion levels 2 and 37 days later (LTM2 and LTM3). *Po0.05 (corrected for multiple comparisons, ANOVA) compared with SR and LTM2.

Results are shown as the mean±s.e.m. d, days.
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network level33. In fact, the two key boundary conditions
proposed for reconsolidation, the unpredictability of the
retrieval stimulus34 and the presence of novel information35–37

are those that give rise to new learning including extinction7.
Our experimental demonstration of reconsolidation blockade
as facilitated extinction suggests that there is no competition
between memory updating or strengthening (functions attributed
to reconsolidation) and extinction, which are all described by
similar learning rules, but rather it may suggest a molecular and
cellular process that prevents new learning, which is gated by the
similarity of the recalled memory to on-going experience38. In
this regard, we can now focus on investigating the boundary
conditions for extinction. Our data and the observation of the
susceptibility of memory to disruption without retrieval (for
example, refs 39,40) are also more consistent with lingering
consolidation, dynamic trace and comparator interpretations of
memory41–46 rather than a recall-based reconsolidation view.

In summary, we demonstrate the recovery of contextual
memories despite disrupting the molecular correlates of reconso-
lidation in the hippocampus. By doing so, we question the process
of reconsolidation as a separate mnemonic memory process and

suggest that the molecular events activated initially at recall act to
constrain premature extinction. Instead, our results suggest that
when memory is recalled, a dynamic balance exists between
maintaining or strengthening the original memory and extinction.

Methods
Subjects. The subjects were adult male Lister hooded rats weighing 280–350 g.
They were housed in pairs, in holding rooms maintained at 21 �C on a
reversed-light cycle (12-h light/dark; lights on at 2200 h). All experiments were
conducted in the dark period of the rats. Food and water were freely available
throughout the experiment. All procedures were conducted in accordance with
local Cardiff University’s Animal Welfare and Ethical Review Body approval and
the United Kingdom 1986 Animals (Scientific Procedures) Act (Project license
PPLs 30/2236 and 30/2722). Sample size calculations were performed in
http://www.stat.uiowa.edu/Brlenth/Power. All CFC rats were included in the
final data analyses unless explicitly noted.

Surgery and microinfusions into the dorsal hippocampus. Steel double guide
cannula aimed at the dorsal hippocampus (AP-3.50, relative to bregma) were
surgically implanted under anaesthesia47 at least 1 week before behavioural
training. Bilateral infusions via the chronically indwelling cannula were carried out
in awake rats using a syringe pump, connected to injectors (28 gauge, projecting
1 mm beyond the guide cannula) by polyethylene tubing. Anisomycin (Sigma) was
prepared at 80 mg ml� 1 in sterile PBS (pH 7.4), while vehicle controls received PBS
alone. ODNs were PAGE-purified phosphorothioate end-capped 18–20-mer
sequences (SigmaGenosys): Arc antisense ODN, ARCASO, 50-GTCCAGCTCCA
TCTGCTCGC-30 ; Arc missense ODN, ARCMSO, 50-CCACGCCATCGTGCCTT
CGT-30 ; Zif268 antisense ODN, ZIFASO, 50-GGTAGTTGTCCATGGTGG-30 and
BDNF antisense ODN, BDNFASO, 50-TCTTCCCCTTTTAATGGT-30 . All ODN
sequences were subjected to a BLAST search on the National Center for
Biotechnology Information BLAST server using the Genbank database. The
antisense sequence had positive matches only for its target mRNA sequence, and
no other rat or human-coding sequences. The control missense sequence, which
included the same 20 nucleotides as the cogent ASO sequence but in a scrambled
order, did not generate any full matches to identified gene sequences in the
database. All ODNs were resuspended in sterile PBS (pH 7.4), ARCASO and
ARCMSO to a concentration of 2 nmol ml� 1, while combined ASO infusions gave
a final concentration of each of 2 nmol ml� 1. The volume of ODN infusions was
1 ml per hemisphere delivered at a rate of 0.125 ml min� 1 and were infused 90 min
before either recall or LTM1 sessions. The volume of anisomycin/vehicle infusions
was 1 ml per hemisphere, delivered at a rate of 0.5 ml min� 1 and given immediately
after either recall or LTM1. All trained rats, unless indicated, were included in
subsequent analyses. Where the procedure permitted, histological determination of
the cannula placement using b-thionin staining of Nissl substance showed that all
the brains examined showed the placement of cannula to be in the dorsal
hippocampus with minimal tissue damage or ventricle enlargement.

Contextual fear conditioning. Conditioning was performed in one of two distinct
contexts. During the 3-min conditioning training trial, rats received a single 2 s,
0.5 mA scrambled footshock (US) 2 min after being placed into the conditioning
context. All rats were returned to the home cages after conditioning. Recall of CFM
occurred 2–4 days later and consisted of exposing rats to the conditioned context
for either 2 min (Short Recall, SR) or 10 min (Long Recall, longer re-exposure).
Retrieval tests 3 h (post-retrieval short-term memory, PR-STM), or 2–39 days
(long-term memory, LTM1- 3) after recall consisted of exposing the rat to the
conditioning context for 2 min. In some experiments a 2 s, 0.25 mA scrambled
footshock was given to co-terminate with the PR-STM or LTM1 as a reminder
stimulus (Reminder US). Freezing behaviour served as a measure of the condi-
tioned fear response (CR) to the context during the conditioning, extinction
training and recall tests. This was video recorded and quantified by an observer
blind to the experimental group. One unit of freezing was defined as a continuous
absence of movement other than that required for respiration in 1 s sampled every
10 s. Freezing behaviour was analysed in a repeated measures analysis of variance
(repeated measures ANOVA) with test as a within-subjects factor, or by ANOVA.
For repeated measures ANOVA, Mauchly’s Test of Sphericity was applied. If the
sphericity assumption was not met, the Greenhouse–Geisser correction was
applied. Tukey’s test was then used for post hoc analysis to determine the sources of
significance (*Po0.05, **Po0.01 and ***Po0.001). Post hoc planned comparisons
were made using repeated measures ANOVA and the P-value constrained by the
number of comparisons made.

In situ hybridization. Thirty minutes after recall rats were killed by carbon dioxide
inhalation and the brain was rapidly removed and processed for in situ hybridi-
zation of an oligonucleotide probe (50-AGCATCTCAGCTCGGCACTTACCAA
TCTGCAGGATCACATTGGGT-30, SigmaGenosys Ltd, Cambridge, UK) com-
plementary to nucleotides 288–332 of Arc (NM 019361), 30-end-labelled with
[a-35S] dATP17. Images were captured using LeicaQWIN imaging software
(Leica Microsystems (UK) Ltd, Milton Keynes, UK) using an � 100 objective
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LTM3 tests 2 and 38 d later (F(1,8)¼0.409, P¼0.540, repeated measures

ANOVA). Results are shown as mean±s.e.m. d, days.
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under oil immersion. Silver grain density was assessed in dorsal hippocampal CA1
pyramidal cells (approximately bregma � 3.3 to 3.944 mm) using ImageJ imaging
software (http://rsbweb.nih.gov/ij/). Grains (total and non-specific) were counted
over sufficient randomly selected neurons from each region for each animal such
that the SE of the counts for any region was o10% of the population mean
(typically 24 cells). In each case, cells were selected from at least three non-adjacent
separate sections. A specific grain count was then calculated for each region by
subtracting total and non-specific counts. The mean silver grain count in each
region for each animal was then divided by the mean count in that region for the
No Recall control group to give a standardized grain count (%) for each group.
Standardized results were analysed by ANOVA, and post hoc comparisons were
made using Tukey’s test.

Western blotting. At 2 or 6 h after retrieval testing, rats were sacrificed by carbon
dioxide inhalation. The rats were decapitated and the brain was rapidly removed
and placed on ice. The hippocampal dentate gyrus/CA3 and CA1 regions were
microdissected and the dorsal half was isolated and frozen on dry ice before storage
at � 80 �C. Tissue lysates and western blotting were performed essentially as
previously described47. Primary and secondary antibodies were diluted in TBST
containing 0.5% Tween 20 and 2% ECL Advance blocking agent (GE Healthcare
Inc, Chalfont St Giles, UK) and they were used at the following concentrations: Arc
(H-300 Santa Cruz Biotechnology Inc, Insight Biotechnology Ltd, Wembley, UK),
1:20,000; GAPDH (ab9485, Abcam plc, Cambridge, UK), 1:10,000 and goat
anti-rabbit IgG (whole-molecule)-peroxidase conjugate (Sigma-Aldrich Company
Ltd. Poole, UK), 1:10,000. Incubation in antibody solutions were all for 1 h at room
temperature with the exception of blots that were incubated with Arc antibody,
which were incubated at 4 �C, overnight. Blots were visualized using ECL
Advance detection (GE Healthcare Inc, Chalfont St Giles, UK) and opposed to
autoradiographic film. Autoradiographs of each western blot were developed
to be linear in the range used for densitometry for each protein target and for
GAPDH. Autoradiographic images were scanned, digitized and the amounts
of Arc and GAPDH signal were quantified for each sample using ImageJ
(http://rsbweb.nih.gov/ij). Averaging the amount of GAPDH across samples on
each western blot and deriving a normalization factor for each sample corrected for
loading variation. Levels of Arc protein were standardized with respect to the mean
measured in the No Recall control group. ANOVA was applied and Tukey’s test
was then used for post hoc analysis to determine the sources of significance.
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