Big Data and High-Performance Computing

Taught by experts in statistics, operational research and computer science, this programme will help you develop both the theoretical understanding and practical experience of applying methods drawn from data science and analytics.

Big Data and High-Performance Computing is a multidisciplinary Summer School split across the Schools of Computer Science and Informatics, Mathematics and Physics and Astronomy. Working together, these Schools will introduce you to a range of in-demand skills for extracting and handling ‘big data’, discovering and communicating meaningful patterns from the data, and applying modelling tools to help businesses and government organisations make better decisions.

This Summer School will begin with introductory lectures, workshops and practical sessions intended to provide a basic understanding of programming languages (Python, R and C) and elementary statistical data analysis methods. These activities will provide a grounding for subsequent more advanced topics in data analysis and computing later in the School. The focus will be on practical applications of the various techniques described, showcases by examples from the world-leading research carried out in the School of Physics and Astronomy on data obtained from astronomical satellites such as Planck and Herschel as well as gravitational wave research.

The high-performance computing component of the Summer School will look at important distinctions between shared and distributed memory models, and between data and task-based parallelism, and teach you how to write simple parallel applications. The focus will mainly be on the practical issues of programming modern parallel computers using OpenMP, MPI, and CUDA.

To make sure you benefit from this Summer School, we suggest that applicants are familiar with the C programming language, R and Python. However, if you are unfamiliar with these languages, but still wish to participate in the course, we can also provide you with tutorial material in advance of the summer school. Although it would be beneficial, no advanced expertise in programming or in statistics is required.

If you have any queries about this Summer School, the academic content or how you can prepare for this course, please get in touch with Sophie Lewis on

Preliminary schedule

Please note this is subject to change.

Saturday 21 July 2018Arrival in Cardiff (pick up from Heathrow provided)
Sunday 22 July 2018Social event
Monday 23 July 2018Welcome lecture and orientation scavenger hunt
Tuesday 24 July 2018Lecture: Crash course in Python and introduction to data analysis
Practical session: Python
Problem-solving informal assessment
Wednesday 25 July 2018

Lecture: Introductory Data Analysis (formatting, processing)

Practical Session: Gravitational Waves

Key-note lecture on Gravitational waves

Tour: Astronomical Instrumentation (detectors)

Thursday 26 July 2018

Lecture: Multivariate regression models

Laboratory Session

Friday 27 July 2018

Lecture:  Data mining, classification and clustering

Laboratory Session

Industrial visit

Saturday 28 July 2018Field trips and free time
Sunday 29 July 2018Field trips and free time
Monday 30 July 2018

Lecture: Machine learning and deep learning

Laboratory Session

Tuesday 31 July 2018

Lecture: Examples of parallelism; shared and distributed memory architectures

Industrial visit

Lecture: Programming with OpenMP 4.0

Laboratory Session

Wednesday 1 August 2018

Lecture: Introduction to message passing and the MPI programming model

Laboratory Session

Thursday 2 August 2018

Lecture: Programming with GPUs

Laboratory Session

Friday 3 August 2018

Assessment Day

Final Gala Ceremony

Saturday 4 August 2018Departure from Cardiff (drop off to Heathrow provided)


The fee for the Summer School is £1,995.

This includes tuition fees, accommodation, 10 meals per week (breakfast and lunch, Monday to Friday), airport pick up and drop off from Heathrow airport on fixed dates (pick up is on 21 July, drop off is 4 August) and excursions organised by Cardiff University (such as Stonehenge and industrial visits).

Contact us

If you have any questions or for more information, please email