Professor Jim Murray

Professor Jim Murray

Head of School, Biosciences

School of Biosciences

+44 (0)29 2087 6676
+44 (0)29 2087 4117
Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX

I graduated in Genetics from the University of Cambridge in 1983 as a member of King's College. I was then awarded a Pre-Doctoral Fellowship and studied for my Ph.D. at the European Molecular Biology Laboratory in Heidelberg, Germany in collaboration with the National Institute for Medical Research, Mill Hill, London under Professor Gianni Cesareni [ , analysing the molecular mechanisms responsible for the maintenance of the yeast 2 micron circle plasmid (1983-1987).

In 1988, I was appointed to a University Lectureship in Biotechnology at the University of Cambridge, and was promoted to Reader in Biotechnology in 2001 and to a Personal Chair as Professor of Molecular Biotechnology in 2004, leading an active research group of around 15 postdocs and postgraduate students. Over 20 PhD students have successfully graduated from my lab since 1993, almost all completing with 4 years, and 40 postdoctoral researchers have worked with me. Many now occupy prestigious positions across the globe as researchers and leaders in academia and industry.

Research overview

The group has two major research interests in plant cellular development and molecular biotechnology.

Plant cellular development seeks to understand how processes operating at the level of the cell are integrated with plant development. Plants grow continuously and are responsive to the environment, so cell division and cellular differentiation are closely integrated in growth processes. We focus in    particular on understanding how cell division is controlled in plants, how it responds to the environment, and how it is co-ordinated with differentiation to build complex and highly organised structures. We study cell division both during development and in cell cultures applying a range of genetic,    cell biological, imaging, transgenic and systems biology approaches in a range of developmental situations.

Molecular biotechnology is the study and application of molecular approaches to practical problems. The lab has a longstanding interest in two areas- the molecular and cellular mechanisms by which plasmids are maintained in yeast, and the applications of bioluminescence to diagnostic systems, in particular    a new technology known as BART (Bioluminescent Assay in Real-Time) which can detect nucleic acid amplification as it takes place in portable devices.

Research in the lab focuses around molecular aspects of cellular development in plants, particularly the control of cell division and cellular differentiation in plant growth, and on applications of molecular biology, based in our expertise in yeast molecular biology and bioluminescence.

The group has always collaborated widely with both academic groups and companies from across the UK and Europe. We have hosted several Marie Curie Fellows with an excellent success rate in applications and participated in multiple EU projects and Research Training Networks, including the Systems Biology of the Shoot Apical Meristem (SY-STEM), and enquiries from outstanding applicants interested in joining the lab are always welcome.

My interests span from basic biological research to the applications of technology and entrepreneurship, and I have filed 11 patents in diverse areas. In 2003 I co-founded Lumora Ltd, a molecular diagnostics company that is focused on high-speed portable DNA diagnostics devices based on a novel bioluminescent technology for detecting microorganisms in foods and disease. From 2004-2008 I was Academic Director of the Master's in Bioscience Enterprise, a high profile international course that combines teaching of the latest advances in biotechnology with business and entrepreneurship skills, and in 2007 was acting Director of the Management of Technology and Innovation in the Judge Business School, Cambridge University.

In late 2008, I transferred the research group to the School of Biosciences, Cardiff University, opening exciting new collaboration opportunities and a new chapter for the lab. Here we occupy newly refurbished and purpose-designed facilities with an excellent equipment infrastructure. We are based within a broad and stimulating biological sciences department, which emphasises our interest in collaborating widely across the biological and other sciences, and located in the exciting city of Cardiff.

Molecular Development in Plants

Plant Cell Division and Cell Cycle Control

Cell division in plants is largely concentrated in specialised regions known as meristems, which contain the stem cells. The most important meristems are located at the tips of shoots and roots. We are interested in the mechanisms by which cell division is controlled in plant cells, how it is organised within meristems, and how this changes not only during plant development, but also in response to the environment.

The processes which a cell undergoes in order to divide is termed the cell cycle. Our main interest is in genes that control the entry into the cell cycle - the decision as to whether a cell will divide or not. We cloned a family of genes from plants called D-type cyclins (CYCD), which are related to genes that control the same process in mammals. Further analysis showed, somewhat unexpectedly, that the whole pathway of commitment to cell division is conserved between plants and mammals, although the signals to which cell division responds are, of course, different.

D-type cyclins in both plants and mammals share the property of responding to signals that come from outside the cell. In Arabidopsis, one group of the D-type cyclins called CYCD3 responds to the plant hormone cytokinin, and overexpression of CYCD3 can replace the requirement for exogenous cytokinin (Riou-Khamlichi et al., 1999). Arabidopsis mutants lacking all three CYCD3 genes show reduced cell division and their organs are made of fewer cells (Dewitte et al, 2007).

Plants are unusual in having large numbers of genes controlling the cell cycle, and we have used cell cultures to study their action in the cell cycle, employing biochemical and transcript profiling techniques. This has provided the understanding of the timing of action of genes, and allowed us to progress to analyzing their role in plant development.

In addition to the normal mitotic cycle, in which the chromosomes are replicated and then shared between two daughter cells, plant cells switch to an alternative cycle called the endocycle, in which DNA is replicated (S phase) but not segregated. Therefore each endocycle round doubles the DNA content of the cell. This switch to endocycles is associated with differentiation of cells and a large increase in volume that drives much of plant growth (compare the meristem and cotyledon cells in the section below). The balance of mitotic cycles and endocycles, and the control of the switch between them, determines how many cells comprise a plant organ and how large those cells are. This control is a major focus of research in the lab.

The lab takes an integrated view of cell division in plants, and studies its control and role at the biochemical and molecular level, in cell suspension cultures and at the developmental level in transgenic plants and mutants.

Systems approaches to Meristem Organisation and Maintenance

In order to understand how the behaviour of individual cells is co-ordinated to build complex structures during plant development, we are applying systems analysis approaches. One example is the shoot apical meristem, which forms the tip of shoots. This is a shallow domed structure containing the stem cell niche in the central region, surrounded by an organogenic zone where new organs (leaves or flowers) are initiated. In ongoing projects, we are seeking to understand how cell identity, cell division and cell differentiation are interlinked and coordinated at the molecular level by genetic regulators and the hormones cytokinin and auxin. This work is funded through the EU SY-STEM (Systems Biology of Stem Cell Function in Arabidopsis) network ( ) and a European Research Area in Plant Functional Genomics ( ) network on Plant Stem Cells, in which the Cardiff lab is the co-ordinator.

The influence of the environment

A further unique aspect of plant growth is that it responds to the environment. Under conditions of stress- such as low water or high temperature- plants stop growing. With funding from the BBSRC ( ) and Bayer CropScience ( ), we are seeking to understand how and why they stop growing, and what is happening at the cellular level. Molecular insights into this process and how it is signalled may lead to opportunities to engineer crops with increased stress tolerance and so higher yields.

Molecular biotechnology: Engineering new opportunities

Firefly luciferase and applications of bioluminescence in diagnostics

Firefly luciferase emits light in the presence of its substrate luciferin and ATP, and is widely used as a method of measuring ATP concentrations.

Since all living organisms contain ATP, firefly luciferase it finds widespread application in diagnostic assays for contamination in the pharmaceutical, food processing and related industries as well as for environmental monitoring. The native enzyme is rather labile, and we have successfully engineered the enzyme for improved stability, providing greater utility in a range of assays, and these enzymes have now been commercialized.

Using the thermostable luciferases, we developed a new bioluminescent method to detect specific nucleic acid sequences known as BART (Bioluminescent Assay in Real-Time). This novel reporter system that permits real-time, quantitative detection of nucleic acids during isothermal DNA amplification without the need for fluorescent reporters and has been commercialized through a spin-out company Lumora, jointly funded by the University of Cambridge and commercial investors. BART works by coupling the generation of pyrophosphate, a by-product of nucleic acid synthesis, to the emission of light from a highly thermostable version of firefly luciferase. The amplification of a specific target nucleic acid sequence therefore becomes linked to a luminescent output from the sample itself (for a detailed explanation of the technology see ). Since light is readily measured by simple devices, portable and cheap apparatus can be built to carry out molecular tests that previously were only possible in the laboratory. We are applying this technology to develop methods to track GM foodstuffs with the EU Co-EXTRA consortium ( ) as well as detecting pathogenic microorganisms.

Yeast plasmids and applications of yeast

Budding yeast (Saccharomyces cerevisiae) is almost unique in having a small nuclear plasmid that has specific mechanisms that ensure its maintenance. The plasmid appears to be a relatively benign molecular parasite- it is very rarely lost from yeast cells and confers a measurable but slight disadvantage to its host. The plasmid has evolved a transmission mechanism independent of centromere function and a copy number control mechanism. These characteristics have led to the widespread use of the plasmid as a basis for cloning and expression vectors. We are interested in the chromatin modifications that allow the maintenance mechanisms to operate effectively. We also make use of yeast in the development of novel assays for screening for inhibitors of specific gene function with potential roles as drug candidates.

Group members

Postgraduate research students

External profiles

Research links