Dr Jonathan Bartley

Dr Jonathan Bartley

Senior Lecturer in Physical Chemistry

School of Chemistry

Email:
bartleyjk@cardiff.ac.uk
Telephone:
+44 (0)29 2087 0745
Fax:
+44 (0)29 2087 4030

Exploring new methods for synthesising metal oxides and mixed metal oxides for use as catalysts and supports that will give improved catalyst performance. A number of methodologies for preparing catalysts have been developed such as:

  • supercritical antisolvent precipitation
  • the use of structure directing agents
  • high temperature - high pressure synthesis
  • microemulsions for utilization of unsupported nanoparticle catalysts

For more information, click on the 'Research' tab above.

Links

Research Group: Cardiff Catalysis Institute and http://novacam.eu/

MSc (1995) and PhD (1999, preparation of heterogeneous selective oxidation catalysts), Leverhulme Centre for Innovative Catalysis, University of Liverpool. Appointed Postdoctoral Research Fellow, Cardiff University  (1999), Senior Research Fellow, Cardiff University (2004), Assistant Director, Cardiff Catalysis Institute  (2009).

2018

2017

2016

2015

2014

2013

2012

2011

2010

2009

2008

2007

2006

2005

CH2118 Energy Resources and Materials

CH2310 Catalysis and Electrocatalysis

CH3407 Advanced Materials

CHT215 Key Skills in Catalysis

CHT217 Catalysis Design Study

CHT219 Preparation and Evaluation of Heterogeneous Catalysts

CHT401 Advanced Heterogeneous Catalysis

CHT403 Chemical and Catalytic Reaction Engineering

CHT404 Catalyst Design Project

Details of each module is available in course finder

The methodology for preparing mixed metal oxide catalysts has changed little over the last 60 years. Typically metal nitrate solutions are co-precipitated using a base to yield precursors that are then calcined to form the oxide catalysts. Due to the crude preparation methodology, catalysts prepared in this way are a complex mixture of mixed oxide and single oxide phases. This leads to a waste of the active metals which can be present either as inactive phases or as unselective phases which reduce the activity and selectivity of the final catalyst.

We are interested in exploring new methods for synthesizing metal oxides and mixed metal oxides for use as catalysts and supports that will give improved catalyst performance and have developed a number of methodologies for preparing catalysts such as: supercritical antisolvent precipitation, the use of structure directing agents, high temperature high pressure synthesis and the use of microemulsions to prepare unsupported metal nanoparticle catalysts.

Hopcalite is a copper manganese oxide that is used for low temperature CO oxidation. The traditional co-precipitated catalyst contains the mixed metal oxide active catalyst but also copper oxide and manganese oxide. This can be seen from chemical analysis of the material using scanning transmission electron microscopy (STEM) X-ray energy-dispersive spectrometry (EDS) .

We have developed an alternative method for preparing catalysts using supercritical antisolvent precipitation. Copper and manganese acetates are dissolved in DMSO and pumped into a vessel containing supercritical (sc) CO2. The solvent and scCO2 diffuse into each other, causing the DMSO to expand, reducing its solvent power and the acetates are precipitated. This fast precipitation results in a homogeneous distribution of the components in the material that after calcination gives phase pure copper manganese oxide which has improved performance over the co-precipitated catalyst that also contains the single oxide phases.

Vanadium phosphate catalysts are used commercially for the selective oxidation of butane to maleic anhydride. The precursor (VOHPO4*0.5H2O) is prepared by reacting vanadium V oxide (V2O5) and phosphoric acid (H3PO4) in the presence of an alcohol which acts as a reducing agent and the solvent. By adding small amounts of 2-poly(styrene-alt-maleic acid) (PSMA) into the preparation the crystallinity of the precursors can be increased. This leads to very regular rhomboidal crystals, rather than the lozenge shaped crystals obtained from standard preparations. This increase in crystallinity enables the activation of the precursor to the final catalyst to occur much quicker. The surface area of the catalyst is also increased as the addition of PSMA leads to thinner plates being formed.