Skip to content
Skip to navigation menu

Prof Graham Hutchings  -  FLSW FRS

Research Interests

  • The study of gold nanocrystals as novel active heterogeneous catalysts and their characterisation.
  • The design of selective oxidation and hydrogenation catalysts and their study using in situ spectroscopy.
  • Designing novel heterogeneous catalysts

Supported gold and gold palladium alloy catalysts have been found to be particularly effective for a number of selective oxidation reactions. Supporting gold on graphite or activated carbon makes catalysts that can oxidise alkenes with molecular oxygen under mild conditions. New gold palladium catalysts have been designed that can be used under inherently safe, non-explosive conditions. The gold palladium nanocrystals have been found to have both core shell structure as well as being homogenous alloys and can give exceptionally high rates of synthesis without making water as a by-product. The same catalysts have been shown to be equally effective for the oxidation of primary alcohols using oxygen under mild solvent-free conditions.  We have found that benzyl alcohol can be oxidised using oxygen under mild reaction conditions (100-160°C) in the absence of solvent to give benzaldehyde in high selectivity will a yield of over 90%. Other alcohols can also be reacted and, in particular, primary alcohols, which are normally very unreactive can readily be oxidised. This work has been extended to new oxidation target reactions, including hydrocarbon oxidation. We have found that toluene can be selectively oxidized to benzoyl benzoate using supported gold palladium alloy catalysts prepared using a sol-immobilisation method. In addition we have found a non complex method for removing residual ligands that can remain on the surface of metal nanoparticles prepared using the sol- immobilsation method. Research in the group is now actively investigating the oxidation of methane and other alkanes.



Publication List [153.7 Kb]